版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点在第三象限,则角的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在中,“”是“”的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件3.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.754.先后抛掷枚均匀的硬币,至少出现一次反面的概率是()A. B. C. D.5.已知向量,若,则的最小值为().A.12 B. C.16 D.6.在中,已知,.若最长边为,则最短边长为()A. B. C. D.7.定义运算,设,若,,,则的值域为()A. B. C. D.8.在直角梯形中,,,,,,则梯形绕着旋转而成的几何体的体积为()A. B. C. D.9.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的底层共有灯A.81盏 B.112盏 C.162盏 D.243盏10.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,若对任意都有,则实数的取值范围是_________.12.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).13.观察下列式子:你可归纳出的不等式是___________14.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.15.已知两点,则线段的垂直平分线的方程为_________.16.过点且在坐标轴上的截距相等的直线的一般式方程是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角、、所对的边分别为、、,且满足.(1)求角的大小;(2)若,,求的面积.18.已知函数,.(1)求的最小正周期;(2)求在闭区间上的最大值和最小值.19.已知是夹角为的单位向量,且,.(1)求;(2)求与的夹角.20.已知α为锐角,且tanα=(I)求tanα+(II)求5sin21.自变量在什么范围取值时,函数的值等于0?大于0呢?小于0呢?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据同角三角函数间基本关系和各象限三角函数符号的情况即可得到正确选项.【详解】因为点在第三象限,则,,所以,则可知角的终边在第二象限.故选:B.【点睛】本题考查各象限三角函数符号的判定,属基础题.相关知识总结如下:第一象限:;第二象限:;第三象限:;第四象限:.2、A【解析】
余弦函数在上单调递减【详解】因为A,B是的内角,所以,在上余弦函数单调递减,在中,“”“”【点睛】充要条件的判断,是高考常考知识点,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法。3、C【解析】
根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.4、D【解析】
先求得全是正面的概率,用减去这个概率求得至少出现一次反面的概率.【详解】基本事件的总数为,全是正面的的事件数为,故全是正面的概率为,所以至少出现一次反面的概率为,故选D.【点睛】本小题主要考查古典概型概率计算,考查正难则反的思想,属于基础题.5、B【解析】
根据向量的平行关系,得到间的等量关系,再根据“”的妙用结合基本不等式即可求解出的最小值.【详解】因为,所以,所以,又因为,取等号时即,所以.故选:B.【点睛】本题考查利用基本不等式求解最小值,难度一般.本题是基本不等式中的常见类型问题:已知,则,取等号时.6、A【解析】试题分析:由,,解得,同理,由,,解得,在三角形中,,由此可得,为最长边,为最短边,由正弦定理:,解得.考点:正弦定理.7、C【解析】
由题意,由于与都是周期函数,且最小正周期都是,故只须在一个周期上考虑函数的值域即可,分别画出与的图象,如图所示,观察图象可得:的值域为,故选C.8、A【解析】
易得梯形绕着旋转而成的几何体为圆台,再根据圆台的体积公式求解即可.【详解】易得梯形绕着旋转而成的几何体为圆台,圆台的高,上底面圆半径,下底面圆半径.故该圆台的体积故选:A【点睛】本题主要考查了旋转体中圆台的体积公式,属于基础题.9、D【解析】
从塔顶到塔底每层灯盏数可构成一个公比为3的等比数列,其和为1.由等比数列的知识可得.【详解】从塔顶到塔底每层灯盏数依次记为a1,a2,a3故选D.【点睛】本题考查等比数列的应用,解题关键是根据实际意义构造一个等比数列,把问题转化为等比数列的问题.10、D【解析】
由正弦定理及余弦定理可得,,然后求解即可.【详解】解:由可得,则,①又,所以,即,所以②由①②可得:,由余弦定理可得,故选:D.【点睛】本题考查了正弦定理及余弦定理的综合应用,重点考查了两角和的正弦公式,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题若对于任意的都有,可得解出即可得出.【详解】∵,若对任意都有,
∴.
∴,
解得.
故答案为.【点睛】本题考查了数列与函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.12、①②④【解析】
根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.13、【解析】
观察三个已知式子的左边和右边,第1个不等式左边可改写成;第2个不等式左边的可改写成,右边的可改写成;第3个不等式的左边可改写成;据此可发现第个不等式的规律.【详解】观察三个已知式子的左边和右边,第1个式子可改写为:,第2个式子可改写为:,第3个式子可改写为:,所以可归纳出第个不等式是:.故答案为:.【点睛】本题考查归纳推理,考查学生分析、解决问题的能力,属于基础题.14、【解析】
利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【点睛】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.15、【解析】
求出直线的斜率和线段的中点,利用两直线垂直时斜率之积为可得出线段的垂直平分线的斜率,然后利用点斜式可写出中垂线的方程.【详解】线段的中点坐标为,直线的斜率为,所以,线段的垂直平分线的斜率为,其方程为,即.故答案为.【点睛】本题考查线段垂直平分线方程的求解,有如下两种方法求解:(1)求出中垂线的斜率和线段的中点,利用点斜式得出中垂线所在直线方程;(2)设动点坐标为,利用动点到线段两端点的距离相等列式求出动点的轨迹方程,即可作为中垂线所在直线的方程.16、或【解析】
讨论直线过原点和直线不过原点两种情况,分别计算得到答案.【详解】当直线过原点时,设,过点,则,即;当直线不过原点时,设,过点,则,即;综上所述:直线方程为或.故答案为:或.【点睛】本题考查了直线方程,漏解是容易发生的错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
分析:(1)由,利用正弦定理可得,结合两角和的正弦公式以及诱导公式可得;从而可得结果;(2)由余弦定理可得可得,所以.详解:(1)∵∴∴(2)∵∴∴点睛:解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18、(1);(2)最大值为,最小值为【解析】
(1)由三角函数恒等变换的应用可得,利用正弦函数的周期性可求最小正周期.
(2)通过,求得,再利用正弦函数的性质可求最值.【详解】解答:解:(1)由已知,有
,
所以的最小正周期;
(2),当,即时,取最大值,且最大值为;当,即时,取最小值,且最小值为.【点睛】本题主要考查了三角函数恒等变换的应用,正弦函数性质的应用,考查了转化思想,属于基础题.19、(1)(2)【解析】试题分析:(1)根据题知,由向量的数量积公式进行运算即可,注意,在去括号的向量运算过程中可采用多项式的运算方法;(2)根据向量数量积公式,可先求出的值,又,从而可求出的值.试题解析:(1)==(2)20、(I)tanα+π【解析】试题分析:(1)根据两角和差的正切公式,将式子展开,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年莆田道路旅客运输驾驶员从业资格考试
- 2024年成都客运考试口诀是什么意思
- 2024年户外广告牌租赁合同
- 2024年招商引资居间合同
- 2024年投标承诺函范文
- 2024年三人合伙投资经营简单协议书
- 2024年楼盘代理合同范本
- 2024年无产证房屋转让协议书
- 2024年房地产配套供配电建设规定合同
- 个人住房公积金的借款合同2024年
- (正式版)HGT 20656-2024 化工供暖通风与空气调节详细设计内容和深度规定
- 2024年安徽省C20教育联盟中考二模道德与法治试题
- MOOC 耕作学-沈阳农业大学 中国大学慕课答案
- 2023年上海市普通高中学业水平等级性考试化学真题试卷含答案
- 2023-2024学年广东省深圳市宝安区宝安中学集团八年级(上)期中历史试卷
- JTG F90-2015 公路工程施工安全技术规范
- 德育与班级管理的心得体会
- TCHAS 10-4-10-2022 中国医院质量安全管理 第4-10部分:医疗管理病案管理
- 江苏省泰州市海陵区2023-2024学年七年级上学期期中语文试卷
- 驾驶员技能比武方案
- 赫兹伯格双因素理论(正式版)课件
评论
0/150
提交评论