版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年湖南省湘潭市县麦子石中学高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.椭圆的左焦点为F,若F关于直线的对称点A是椭圆C上的点,则椭圆的离心率为(
)A. B. C. D.参考答案:A【分析】利用点关于直线的对称点,且A在椭圆上,得,即得椭圆C的离心率;【详解】∵点关于直线的对称点A为,且A在椭圆上,即,∴,∴椭圆C的离心率.故选A.【点睛】本题主要考查椭圆的离心率,属于基础题.2.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=()A.B.6 C.12 D.7参考答案:C【考点】抛物线的简单性质.【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C3.设平面向量a=(1,2),b=(-2,y),若a∥b,则|3a+b|等于()A.
B.C.
D.参考答案:A4.若则目标函数的取值范围是
A.[2,6]
B.[2,5]
C.[3,6]
D.[3,5]参考答案:A5.已知函数,数列,满足当时,的值域是,且,则(
)A.5
B.7
C.9
D.11参考答案:C略6.在极坐标系中,圆的圆心的极坐标是A.
B.
C.
D.参考答案:C7.若函数的定义域和值域都是[0,1],则等于A.
B.2
C.
D.参考答案:B略8.
840和1764的最大公约数是(
)A.84
B.
12
C.
168
D.
252参考答案:A9.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A. B.
C.D.参考答案:D【考点】椭圆的简单性质.【分析】设|AF1|=x,|AF2|=y,利用椭圆的定义,四边形AF1BF2为矩形,可求出x,y的值,进而可得双曲线的几何量,即可求出双曲线的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴,即x2+y2=(2c)2=12,②由①②得x=2﹣,y=2+.设双曲线C2的实轴长为2a′,焦距为2c′,则2a′=|AF2|﹣|AF1|=y﹣x=2,2c′=2,∴C2的离心率是e==,故选:D.10.曲线y=ln(x+1)在x=0处的切线方程是() A.y=x B. y=﹣x C. y﹣x D. y=2x参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.过椭圆+=1内一点M(2,1)引一条弦,使得弦被M点平分,则此弦所在的直线方程为.参考答案:x+2y﹣4=0【考点】直线与圆锥曲线的关系.【分析】设A(x1,y1),B(x2,y2),由题意可得,两式相减,结合中点坐标公式可求直线的斜率,进而可求直线方程【解答】解:设直线与椭圆交于点A,B,设A(x1,y1),B(x2,y2)由题意可得,两式相减可得由中点坐标公式可得,,==﹣∴所求的直线的方程为y﹣1=﹣(x﹣2)即x+2y﹣4=0故答案为x+2y﹣4=012.从1,2,3,4这四个数中一次随机地取出两个数,则其中一个数是另一个数的两倍的概率为_________。
参考答案:13.已知命题:“在平面内,周长一定的曲线围成的封闭图形中,圆的面积最大”,类比上述结论,可得到空间中的相关结论为___________。参考答案:在空间中,表面积一定的曲面围城的封闭几何体中,球的体积最大【分析】由已知中的平面内的性质:“在平面内,周长一定的曲线围成的封闭图形中,圆的面积最大”,根据平面上的线的性质类比空间的面的性质,可得空间中“表面积一定的曲面围城的封闭几何体中,体积最大是球体”,即可得到答案.【详解】根据平面中有:“在平面内,周长一定的曲线围成的封闭图形中,圆的面积最大”,利用类比推理,可得空间中“表面积一定的曲面围城的封闭几何体中,球的体积最大”【点睛】本题主要考查了类比推理的应用,其中类比推理是依据两类数学对象的相似性,将已知的一类数学对应的性质类比到另一类数学对象上却,其一般步骤:(1)找出两类事物的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得很一个明确的结论,着重考查了分析问题和解答问题的能力,属于基础题.14.定义:曲线上的点到直线的距离的最小值称为曲线到直线的距离;现已知抛物线到直线的距离等于,则实数的值为
.参考答案:略15.阅读下面程序.若a=4,则输出的结果是.参考答案:16【考点】伪代码.【专题】计算题;分析法;算法和程序框图.【分析】解:模拟执行程序代码,可得程序的功能是计算并输出a=的值,由a=4,即可得解.【解答】解:模拟执行程序代码,可得程序的功能是计算并输出a=的值,a=4不满足条件a>4,a=4×4=16.故答案为:16.【点评】本题主要考查了条件语句的程序代码,模拟执行程序代码,得程序的功能是解题的关键,属于基础题.16.定义在上的函数f(x),如果对于任意给定的等比数列{an},仍是等比数列,则称f(x)为“等比函数”.现有定义在.(-∞,0)∪(0,+∞)上的如下函数:①;②;③;④,则其中是“等比函数”的f(x)的序号为
参考答案:(3)(4)17.一个直角梯形的两底长分别为2和5,高为4,绕其较长的底旋转一周,所得的几何体的侧面积为
。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知斜率为的直线与双曲线交于
、两点,且,求直线的方程.参考答案:
19.已知经过点A(-4,0)的动直线l与抛物线G:相交于B、C,当直线l的斜率是时,.(Ⅰ)求抛物线G的方程;(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.参考答案:解:(1)设B(x1,y1),C(x2,y2),由已知k1=时,l方程为y=(x+4)即x=2y-4.
由得2y2-(8+p)y+8=0∴又∵∴y2=4y1
由p>0得:y1=1,y2=4,p=2,即抛物线方程为:x2=4y.
(2)设l:y=k(x+4),BC中点坐标为(x0,y0)
由得:x2-4kx-16k=0①∴x0==2k,y0=k(x0+4)=2k2+4k.
∴BC的中垂线方程为y?2k2?4k=?(x?2k)
∴BC的中垂线在y轴上的截距为:b=2k2+4k+2=2(k+1)2
对于方程①由△=16k2+64k>0得:k>0或k<-4.
∴b∈(2,+∞)
略20.为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
患病未患病总计没服用药203050服用药50总计100
设从没服用药的动物中任取两只,未患病数为;从服用药物的动物中任取两只,未患病数为,工作人员曾计算过.(1)求出列联表中数据的值;(2)能够以99%的把握认为药物有效吗?参考公式:,其中;①当K2≥3.841时有95%的把握认为、有关联;②当K2≥6.635时有99%的把握认为、有关联.参考答案:(1)……………………6分(2)故不能够有99%的把握认为药物有效………12分略21.设函数f(x)=﹣x3+ax2+bx+c的导数f'(x)满足f'(﹣1)=0,f'(2)=9.(1)求f(x)的单调区间;(2)f(x)在区间[﹣2,2]上的最大值为20,求c的值.(3)若函数f(x)的图象与x轴有三个交点,求c的范围.参考答案:【考点】6E:利用导数求闭区间上函数的最值;63:导数的运算.【分析】(1)求函数的导数,根据条件建立方程组关系求出a,b的值,结合函数单调性和导数之间的关系即可求f(x)的单调区间;(2)求出函数f(x)在区间[﹣2,2]上的最大值,建立方程关系即可求c的值.(3)若函数f(x)的图象与x轴有三个交点,则等价为函数的极大值大于0,极小值小于0,解不等式即可求c的范围.【解答】解:(1)函数的导数f′(x)=﹣3x2+2ax+b,∵f'(x)满足f'(﹣1)=0,f'(2)=9,∴得a=3,b=9,则f(x)=﹣x3+3x2+9x+c,f′(x)=﹣3x2+6x+9=﹣3(x2﹣2x﹣3),由f′(x)>0得﹣3(x2﹣2x﹣3)>0得x2﹣2x﹣3<0,得﹣1<x<3,此时函数单调递增,即递增区间为(﹣1,3),由f′(x)<0得﹣3(x2﹣2x﹣3)<0得x2﹣2x﹣3>0,得x<﹣1或x>3,此时函数单调递减,即递减区间为(﹣∞,﹣1),(3,+∞);(2)由(1)知,当x=﹣1时,函数取得极小值f(﹣1)=1+3﹣9+c=c﹣5,f(﹣2)=8+12﹣18+c=2+c,f(2)=﹣8+12+18+c=22+c,则f(x)在区间[﹣2,2]上的最大值为f(2)=22+c=20,则c=﹣2.(3)由(1)知当x=﹣1时,函数取得极小值f(﹣1)=1+3﹣9+c=c﹣5,当x=3时,函数取得极大值f(3)=﹣27+27+27+c=27+c,若函数f(x)的图象与x轴有三个交点,则得,得﹣27<c<5,即c的范围是(﹣27,5).22.某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段[40,50),[50,60),…,[90,100],画出如如图所示的部分频率分布直方图,请观察图形信息,回答下列问题: (1)求70~80分数段的学生人数; (2)估计这次考试中该学科的优分率(80分及以上为优分)、中位数、平均值; (3)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组、…、第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差大于30分(以分数段为依据,不以具体学生分数为依据),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率. 参考答案:【考点】列举法计算基本事件数及事件发生的概率. 【专题】计算题;概率与统计. 【分析】(1)根据条形统计图1求出70~80分数段的学生人数频率,乘以60即可确定出人数; (2)求出80分及以上学生人数,确定出优生率,找出中位数,平均值即可; (3)根据题意得出所有等可能的情况数,找出“最佳组合”数,即可确定出选出的两组为“最佳组合”的概率. 【解答】解:(1)根据题意得:60×[1﹣(0.005+0.010+0.015×2+0.025)×10]=18(人); (2)成绩在80分及以上的学生有60×(0.005+0.025)×10=18(人), ∴估计这次考试中该学科的优分率为×100%=30%; 该学科40~50分数段人数为60×0.01×10=6(人);50~60分数段人数为60×0.015×10=9(人);60~70分数段人数为60×0.015×10=9(人); 70~80分数段人数为18人;80~90分数段人数为60×0.025×10=15(人);90~100分数段人数为60×0.005×10=3(人); ∴估计这次考试中位数为70~80分数段,即75分; 平均值为(45×6+5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 救援演练心肺复苏方案
- 一年级上册数学教案-6.2 11-20各数的写法 人教版
- 3.3+大气热力环流+课件+高一地理湘教版(2019)必修第一册
- 培训加减分规则
- 大班音乐游戏活动教案:猫捉老鼠
- 教育教学工作实施方案(小学)
- 急性ST段抬高心肌梗死急诊介入治疗
- 第一单元《机械运动》6.路程-时间图像和速度-时间图像(双基过关)(原卷版)
- 第六单元《质量与密度》3.密度的测量(分层训练)(解析版)
- 胰岛素治疗的护理
- 市场营销职业规划生涯发展报告
- translated-(2024.V1)NCCN临床实践指南:心理痛苦的处理(中文版)
- 外国新闻传播史 课件 第十章 俄罗斯地区的新闻传播事业
- 《民用建筑项目节能评估技术导则》
- (2024年)《口腔医学美学》课件
- 七年级英语下册读写综合专项训练
- 门诊护患沟通技巧(简)
- 放射性物质的标志与标识
- 2024年传染病培训课件
- 肿瘤科护理培训总结报告
- 农民心理健康教育
评论
0/150
提交评论