版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学填空题精选
1.如图,己知△/8C中,AB=5,AC=3,则8c边上的中线的取值范围是
2.如图,已知抛物线>=》2+以+。经过点(0,-3),请你确定一个6的值,使该抛物线与x轴的一个交
点在(1,0)和(3,0)之间,你所确定的6的值是.
3.如图,△/8C中,/C=90。,点。在边8c上,以。为圆心,OC为半径的圆交边于点。、E,交
边BC于点尸,若。、E三等分AB,4c=2,则。。的半径为.
4.已知点尸(x,y)位于第二象限,且yW2x+6,x、y为整数,则满足条件的点尸的个数是.
5.半径分别为10和17的两圆相交,公共弦长为16,则两圆的圆心距为.
6.已知方程(2011x)2—2010・2012xT=0的较大根为a,方程/+2010入—2011=0的较小根为6,则a—6=
7.从甲地到乙地有小、42两条路线,从乙地到丙地有5、82、当三条路线,从丙地到丁地有G、C2两
条路线.一个人任意选了一条从甲地到丁地的路线,他恰好选到当路线的概率是.
8.如图,在半径为4,圆心角为90。的扇形OAB的右上有一动点尸,过P作PHLOA于H.设△。尸"
的内心为/,当点尸在布上从点力运动到点8时,内心/所经过的路径长为.
9.已知二次函数y=»2+6x+c图象的一部分如图所示,则”的取值范围是
10.在平面直角坐标系中,已知点P的坐标为(1,0),将其绕原点按逆时针方向旋转30。得到点尸2,延
长0P2至U点3,使OP3=2OP2,再将点心绕原点按逆时针方向旋转30。得到打,延长OP4到点尸5,使OP$
=202,如此继续下去,则点尸20“的坐标是.
11.木工师傅可以用角尺测量并计算出圆的半径厂.如图,用角尺的较短边紧靠。。,并使较长边与。。相
切于点C.假设角尺的较长边足够长,角尺的顶点为B,较短边N8=8cm.若读得8c长为acm,则用含
a的代数式表示r为.
12.己知/(-3,0),B(0,-4),尸为反比例函数了二;1(x>0)图象上的动点,尸C_Lx轴于C,PD±y
轴于。,则四边形”8面积的最小值为
13.在平面直角坐标系中,已知点”(2,4),B(4,2),C(1,1),点尸在x轴上,且四边形ZBOP的
面积是△/8C的面积的2倍,则点P的坐标为.
,4-已知关于、的方程组IZx++3yJ=2)「的解满足㈤<W,则实数'的取值范围是---------------
15.如图,已知尸为'BC外一点,P在边ZC之外,N2之内,若S△刈B:S&BC:SA/MC=3:4:2,且4
ABC三边a,b,c上的高分别为瓦=3,hh—5,hc—6,则尸点到三边的距离之和为.
16.一袋装有四个分别标有数字1、2、3、4,除数字外其它完全相同的小球,摇匀后,甲从中任意抽取1
个,记下数字后放回摇匀,乙再从中任意抽取一个,记下数字,然后把这两个数相加,当两数之和为3时,
甲胜,反之乙胜.若甲胜一次得7分,那么乙胜一次得分,这个游戏对双方才公平.
17.如图,已知点/(0,4),B(4,0),C(10,0),点尸在直线上,且NOPC=90。,则点尸的坐标
为.
18.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图
2由弦图变化得到,它是用八个全等的直角三角形拼接而成.记图中正方形Z8CD,正方形EFGH,正方
形MNKT的面积分别为&,S2,S3.
图1图2
19.如图,在平面直角坐标系中,点N的坐标是(一2,4),轴于2,抛物线y=—2x-2X+C经过点
A,将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△ZO8的内部(不包括△408的边界),
则m的取值范围是
20.某校社会实践小组开展调查快餐营养情况活动,他们从食品安全监督部门获取了一份快餐的信息(如
图).
若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,则其中所含碳水化合物质量的最大值
为克.____________________Q
f-i信总
|[i.快餐的成分:蛋白质、脂肪、I
]:矿物质、碳水化合物;
jj2.快餐总质量为400克;
i:3.脂肪所占的百分比为5%;j
|:4.所含蛋白质质量是矿物质质:
5:量的4倍.[
2
21.如图,正方形481plp2的顶点外、P2在反比例函数y=7(》>0)的图象上,顶点小、8分别在x
轴、y轴的正半轴上,
4在x轴的正半轴上,
22.已知〃、人均为正整数,且满足看<卡,则〃的最小值为
23.如图,在平面直角坐标系中,点/在第二象限,点8在x轴的负半轴上,△408的外接圆与y轴交于
点C(0,啦),NAOB=45°,ZBAO^60°,则点N的坐标为.
24.如图,图①中的圆与正方形各边都相切,设这个圆的周长为G;图②中的四个圆的半径相等,并依次
外切,且与正方形的边相切,设这四个圆的周长之和为C2;图③中的九个圆的半径相等,并依次外切,且
与正方形的边相切,设这九个圆的周长之和为。3;…,依此规律,当正方形边长为2时,则G+Cz+G
+…+。99+G00=
图①图②图③
25.如图,在平行四边形/8C。中,AB=3,8c=4,ZB=60°,E是8c的中点,EFL4B于点F,则△OEF
的面积为__________
26.如图,将一块直角三角板。18放在平面直角坐标系中,点8坐标为(2,0),408=60。,点/在
第一象限,双曲线夕=!经过点4点P在x轴上,过点P作直线的垂线/,以直线/为对称轴,线段
OB经轴对称变换后的像是0B.
(1)当点与点力重合时,点P的坐标为;
(2)设0),当。6'与双曲线有交点时,/的取值范围是.
27.已知抛物线〉=/一(〃?-1)无一/«-1与》轴交于4、8两点,顶点为为C,则△/BC的面积的最小值为
28.如图,E、尸、G、,分别为四边形的边BC,CD,D4的中点,并且图中四个小三角形的
面积的和为1,即SI+S2+S3+S4=l,则图中阴影部分的面积为.
29.在平面直角坐标系中,/、8两点的坐标分别为(一1,1)、(2,2),直线了=代-1与线段的延长
线相交(交点不包括8),则实数%的取值范围是.
30.如图,正方形/8CO的面积为12,点E在正方形NBCZ)内,△Z8E是等边三角形,点P在对角线/C
上,则PA+PE的最小值为.
31.如图,48是。。的直径,弦CO_L48于E,分别以4E、8E为直径作两个大小不同的。01和。Q,
若。=16,则图中阴影部分的面积为(结果保留n).
32.如图,在平面直角坐标系中,等边三角形N8C的顶点8,C的坐标分别为(1,0),(3,0),过坐标
原点0的一条直线分别与边力8,4c交于点、M,N,若OM=MN,则点M的坐标为.
Cx
33.如图,已知一次函数y=—x+8与反比例函数的图象在第一象限内交于4、8两点,且△AOB
的面积为24,则4=
34.已知x=14(7?+1)-讨4(非-1),则J+12x的算术平方根是.
35.有三个含30。角的直角三角形,它们的大小互不相同,但均有一条长为。的边,那么,这三个三角形
按照从小到大的顺序,它们的面积比为.
36.已知点P是抛物线y=-J+3x在y轴有刎部分上的一个动点,将直线y=-2x沿y轴向上平移,分别
交x轴、y轴于8、/两点.若△RiB与A4OB相似,则点P的坐标为.
37.如图,直线y=-x+2啦交x轴、y轴于点8、4点C的坐标为(4啦,0),P是直线上一点,
且/。尸C=45。,则点尸的坐标为
38.如图,在△A8C中,AB=AC=5,以46为直径的。。分别交力C、
线上,且/C8尸=叁乙4,sinNCBF=坐,则即的长为.
39.如图,RtZ\Z8C中,已知/C=90。,/8=50。,点。在边8c上,BD=2CD.将△/BC绕点。按顺
时针旋转角a(0<a<180°)后,点8恰好落在初始Rt^ABC哼边上,那么a=____________
41.在“传箴言”活动中,某党支部的全体党员在一个月内所发箴言条数情况如下:发了三条箴言的党员
中有两位男党员,发了四条箴言的党员有两位女党员.如果在发了三条箴言和四条箴言的党员中分别选出
一位参加区委组织的“传箴言”活动总结会,那么所选两位党员恰好是一男一女的概率为.
42.如图,在△Z8C中,NACB=90°,//=20。.将△/8C绕点C按逆时A,
针方向旋转角a后得△48'C,此时点8在上,C4'交18于点D则
/8CC的度数为.
C'A
43.有四张正面分别标有数学一3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背
面朝匕洗匀后从中任取一张,将该卡片上的数学记为。,则使关于x的分式方程号+2=心有正整
数解的概率为.
44.如图,等边△/8C的边长为8,£是中线4)上一点,以CE•为一边在CE下方作等边尸,连接8尸
并延长至点N,M为BN上一点、,且CM=CN=5,则MV的长为.
45.如图,矩形ZBCD的边48在x轴上,力8的中点与原点O重合,AB=2,AD=\,点E的坐标为(0,
2).点F(“,0)在边ZB上运动,若过点E、尸的直线将矩形/BCD的周长分成2:1两部分,则a的值
为.
46.如图,DB为半圆的直径,A为BD延长线上一点,AC切半圆于点E,BCLAC于点C,交半圆于点F.已
知BD—4,设AD—x,CF—y,则y关于x的函数关系式为.
47.如图,在正方形内有一折线段,其中ZELEF,EFLFC,并且4E=6,EF=8,FC=10,则正
方形与其外接圆之间形成的阴影部分的面积为
ri
BC
48.已知关于x的方程(1一/»2+2取-1=0的两个根一个小于0,另一个大于1,贝ij。的取值范围是
49.已知二次函数yuoZ+bx+c的图象与x轴交于(一2,0)、(xi,0)两点,且1<所<2,与y轴正半
轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c->0;③4°+c<0:@2a-b+l>0.其中正确
结论的序号是.
50.如图,点48在反比例函数的图象上,且点48的横坐标分别为a、2a(aVO),若SAAOB=
3,则上的值为
51.方程,x+2也-1+Nx-1的解为x=,
52.如图,24、尸8是。。的切线,PEC是。。的割线,N8与PC相交于点D若PE=2,Z)C=1,则
的长为___________
53.若一直角梯形的两条对角线的长分别为9和11,上、下两底长都是整数,则该梯形的高为
54.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面
的数为x,朝下一面的数为乃得到平面直角坐标系中的一个点(x,').已知小华前二次掷得的两个点所
确定的直线经过点P(4,7),那么他第三次掷得的点也在这条直线上的概率为.
55.如图,在平面直角坐标系中,△4BC是直角三角形,NACB=90。,ZABC=30°,直角边8c在x轴
上,其内切圆的圆心坐标为/(0,1),抛物线夕=0^+2办+1的顶点为则。=.
56.已知方程亦(a>6>c)的-一个根为a=l,则另-一个根”的取值范围是
57.如图,在△N8C中,//8C和NZC8的平分线相交于。,过。作£F〃8c交48于E,交ZC于尸,
过。作OD_L4C于D下列四个结论:
(DEF是AABC的中位线;A
②以E为圆心、8E为半径的圆与以尸为圆心、3为半径的圆外切;
③设。。=机,AE+AF^2n,则SZMEF=/WZ;
1
@ZBOC=90°+^ZA;B.-------------------------^c
其中正确的结论是.
58.5杆/+3x+2+x~+5x+6+*2+7x+12+x:+9x+208的解是x=
59.如图,在等腰直角三角形/8C中,ZC=90°,。为8C的中点,将△Z8C折叠,使点/与点。重合,
EF为折痕,则笠DF的值为
Ur
3
60.如图,已知点/(1,0),B(3,0),P是直线y=—^x+3上的动点,则当//P8最大时,点尸的坐
61.如图,是。O的直径,/C是弦,将△48C沿ZC翻折,点8落在点O
处,AD交。O于点E,连接EC.若EC〃AB,则/历1C=°.
62.已知△/8C的一条边长为5,另两条边长恰好是一元二次方程2x2-nx+m=0的两个根,则实数m的
取值范围是.
1k
63.如图,已知直线与双曲线^=£*>0)交于/、B两点,且点”的横坐标为4,过原点。的
另一条直线交双曲线y=5(k>0)于C、。两点(点C在第一象限).若以/、B、C、。为顶点的四边形
的面积为24,则点C的坐标为
64.如图1,直线小〃/2,h/2之间的距离为6,圆心为。、半径为4的半圆形纸片的直径在。上,点
户为半圆上一点,设//OP=a.将扇形纸片50尸剪掉,使扇形纸片/OP绕点/按逆时针方向旋转(如图
2).要使点P能落在直线/2上,则a的取值范围是.
33
(参考数据:sin49°=-^-,tan370=-^-)
图2
65.如图,矩形0/8C的顶点。在坐标原点,顶点Z、C分别在x轴、y轴的正半轴上,O/=3,0C=4,
。为边0C的中点,E、尸为边04上的两个动点,且E尸=2,当四边形8。斯的周长最小时,点E的坐标
为____________
66.如图,将直线y=x向下平移b个单位长度后得到直线/,/与
反比例函数y=#(x>0)的图象相交于点4与x轴相交于点8,
贝ijOA2-OB2=.
67.如图,矩形/8CO的周长为32cm,£是工。上一点,DE=4cm,尸是上一点,EFX.EC,且所=
EC,则矩形”8的面积为cm2.
E
68.如图,是。。的直径,点。、7是圆上的两点,且/7平分过点T作延长线的垂线P。,
垂足为C.若。。的半径为2,TC="则图中阴影部分的面积为.
69.若关于x的方程者-亡=这昔只有一个解,则%=
70.如图,正方形488的边长为1,点P为边3c上任意一点(可与点8、C重合),分别过8、C、。作
射线4P的垂线,垂足分别为8'、C'、D',则88'+CC'+。。的最大值为;最小值为.
71.如图,矩形纸片8c=10,点E是4B上一点,把ABCE沿EC向上翻折,使点8落在边
上点F处,若。。内切于以8、C、F、E为顶点的四边形,且ZE:E8=3:5,则。。的半径为.
O
72.已知点P(a+1,。-1)关于x轴的对称点在反比例函数丁=一£(x>0)的图像上,y关于x的函数y
=铲/一(24+1丘+1的图像与坐标轴只有两个不同的交点/、B,则的面积为.
73.如图,等腰RtZs/BC的直角边长为4,以Z为圆心,直角边为半径作弧8。,交斜边ZC于点C1,
GBiL4B于点Bi,设弧BG与线段GS、8山围成的阴影部分的面积为S,再以“为圆心,45为半径
作弧8《2,交斜边ZC于点。2,于点为,设弧81c2与线段C2%,々5围成的阴影部分的面积
为S2,按此规律继续作下去,则&+S2+S3+…+S产.(用含有〃的代数式表示)
A
B4B3B2Bl
74.如图,边长为4的正方形/08C的顶点0在坐标原点,顶点4、8分别在y轴正半轴和x轴正半轴上,
P为08边上一动点(不与。、8重合),OPLO8交于D将正方形402C折叠,使点C与点。重合,
折痕EF与PD的延长线交于点。,设点。的坐标为(x,y),则y关于x的函数关系式为.
75.已知点4、3的坐标分别为(1,0),(2,0),若二次函数y=/+(q—3)x+3的图象与线段NB恰有一
个交点,则”的取值范围是.
76.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,
先将半圆如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m,半圆的直径为4m,则
圆心。所经过的路线长是m.(结果用n表示)
-、
77.如图,在边长为1的正方形"BCD中,以8C为边在正方形内作等边△BCE,并与正方形的对角线交
于点尸、G,则图中阴影图形/FEGD的面积为.d______________「
78.将水平相当的A、B、C、D四人随机平均分成甲、乙两组进行乒乓球单打比赛,每组的胜者进入下一
轮决赛.
(1)A,8被分在同一组的概率是;
(2)/、8在下一轮决赛中相遇的概率是
3
79.已知点尸是一次函数y=—x+4的图象在第一、四象限上的动点,点。是反比例函数夕(x>0)
图象上的动点,PPiLr轴于尸“轴于尸2,轴于。],2Q2,y轴于。2,设点P的横坐标为X,
矩形PPQP2的面积为S,矩形QQ\OQ2的面积为S2,则当Si<S2时,x的取值范围是
80.如图,在5x5的正方形网格中,△/BC的三个顶点都在格点上,若△小&G的三个顶点也在格点上,
且与△/8C相似,面积最大,则△小8|G的面积为.
81.在一条直线上依次有4、B、C三个港口,甲、乙两船同时分别从工、B港口出发,沿直线匀速驶向C
港,最终达到C港.设甲、乙两船行驶f(h)后,与8港的距离分别为&、52(km),&、S2与,的函数
关系如图所示.若甲、乙两船的距离不超过10km时可以相互看见,则两船可以相互看见时/的取值范围
甲
乙
00.53〃h
82.如图所示,在梯形/BCD中,AD//BC,CE是N8CZ)的平分线,且E为垂足,BE=2AE,
若四边形AECD的面积为1,则梯形ABCD的面积为.
A____D
83.在平面直角坐标系中,反比例函数(kWO)满足:当x<0时,y随x的增大而减小.若该反比
例函数的图象与直线y=-x+小k都经过点P,且|OP|=巾,则k=.
84.如图所示,NC为。。的直径,以C于点/,8c是。O的一条弦,直线PB交直线NC于点。,且
85.已知反比例函数图象经过点N(—1,-3),点P是反比例函数图象在第一象限上的动点,以
OA、0P为邻边作平行四边形。/8尸,则平行四边形O/8P周长的最小值为.
86.如图所示,在矩形N88中,AB=nBC,E为BC中点、,DELAC,贝U〃=
87.如图,直线y=3x和y=2x分别与直线x=2相交于点Z、B,将抛物线y=x?沿线段08移动,使其顶
点始终在线段OB±,抛物线与直线x=2相交于点C,设△4OC的面积为S,则S的取值范围是
88.已知/+必=1,-巾Wa+b〈巾,记/=a+b+M,贝卜的取值范围是.
89.如图,平行四边形QEFG的四个顶点在△Z8C的三边上,若AADG、丛DBE、aGFC的面积分别为2、
5、3,则△ABC的面积为
A
90.在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点.如图,。。的半径是小,圆心与坐标
原点重合,/为经过。。上任意两个格点的直线,则直线/同时经过第一、二、四象限的概率为.
91.已知二次函数+版+。的图象与x轴交于不同的两点4、B,顶点为C,且△Z8C的面积SW1,
则『—4c的取值范围是
92.如图,已知正方形纸片488的边长是。。半径的4倍,圆心。是正方形N88的中心,将纸片按
图示方式折叠,使E小恰好与。。相切于点出,则tan/小EF的值为.
93.已知人6均为正整数,且满足虢<•1•〈黯,则当人最小时,分数号=
94.如图,将边长为2的正方形ABCD沿直线/向右无滑动地连续翻滚2011次,则正方形ABCD的中心
经过的路线长为,顶点4经过的路线长为
AD(B)(A)AD
BC(D)BC/
95.如图,半圆。的直径/8=8,C为工。的中点,CD_L/8交半圆于点。,以C为圆心,8为半径画
弧DE交48于E点,则图中阴影部分的面积为.
ACOEB
96.已知二次函数y=x2+2ox—26+1和>=一/+(〃-3)*+必一1的图象都经过x轴上两个不同的点M,N,
则a—,b—.
97.在平行四边形Z8CZ)中,AELBC,AFLCD,E、F为垂足,连接EF.若N8=13,BE=5,EC=9,
则EF的长为.“
98.已知抛物线y=—过点/(4,0)、B(1,3),对称轴为直线/,点P是抛物线上第四象限的
一点,点尸关于直线/的对称点为C,点C关于夕轴的对称点为。,若四边形。”尸。的面积为20,则点尸
的坐标为.
99.如图,在△/BC中,AB=4C=5,BC=6,D、E分别是边/8、/C上的两个动点(。不与4、B重合),
且保持OE〃8C,以DE为边,在点力的异侧作正方形。EFG,连接BG,当ABOG是等腰三角形时,AD
的长为.
100.已知在平面直角坐标系中,点2(8,0),B(0,6),直线8C平分NO8/,交x轴于点C,过。点
作。交4B于点D.尸是射线BC上一动点,若则尸点坐标为.
Ax
101.已知直线^=一乎x+小与x轴、歹轴分别交于点力、B,抛物线少=一乎f+bx+c经过力、8两点,
点尸是抛物线上一点(除/点外),且点P关于直线夕=一乎x+小的对称点。恰好在X轴上,则点尸的
坐标为,四边形APBQ的面积为.
102.正方形力88内接于半径为啦的。。,E为。C的中点,连接BE,
则点O到BE的距离等于.若一Vl\
AB
103.如图,已知抛物线经过点/(-1,0),B(3,0),C(0,3),它的顶点为。,直线夕=丘与抛物线
交于点E、F,M是线段£尸的中点,则当0<左<2时,四边形MCZ58面积的最小值为.
,4
D
104.如图1,RtA/45C^RtA£>EF,ZC:=NEFB=90。,ZABC=ZE=30°,4B=DE=4,点B与点、D重
合,点F在BC匕4B与EF交于点G.将△48C绕点/逆时针旋转,当四边形ACDE成为以DE为底的
梯形(如图2)时,该梯形的高等于—
E
L)
CF
C
81图2
105.如图,在△Z8C中,N8/C=45。,是8c边上的高,BD=3,DC=2,则/。的长为
106.已知抛物线y=—(x+3)(2x+a)与x轴交于4、B两点,与y轴交于点C,且△/8C为直角三角形,
则a的值为
107.如图,△48C中,Z5=120°,AB=4,BC=2,射线动点尸、0分别从8、C同时出发,
P以每秒1个单位长的速度沿射线8C运动,。以每秒2个单位长的速度沿射线CD运动.当CD平分△
N尸。的面积时,△NP。的面积为.
DQE
C
AB
108.从—2,—1,0,1这四个数中任取两个不同的数作为一次函数卜=自+6的一次项系数上和常数项从那
么一次函数了=丘+6图象不经过第三象限的概率为.
109.已知正方形45。的边长为4,以48为直径在正方形内作半圆,E是半圆上一点,且CE=CB,延
长CE交B4延长线于点F,则EF的长为
3
110.如图,在平面直角坐标系中,直线>=一了》+6分别与x轴交于点儿与y轴交于点B,点C在线段
上,以C/为直径的。。交x轴于另一点E,连接BE.当。。与直线BE相切时,点。的坐标为.
111.如图,。。的半径为3,R1切。。于点A,R4=4,PO的延长线交。。于点B,则弦AB的长为
112.在平面直角坐标系中,将点4(a,b)沿水平方向平移机个单位到点小,再将点小绕坐标原点顺时
针旋转90。到点A2,则点A2的坐标为.
113.如图,直线^=一坐x+b与y轴交于点/,与双曲线夕=?在第一象限交于8、C两点,且48YC
=4,则仁
114.已知是半径为2的。。的一条弦,48=2小,点尸是。。上任意一点(与/、8不重合).
(1)如图1,若点尸在。。优弧48上,AP,8P分别与以为直径的圆交于点C、D,则8的长为
(2)如图2,若点尸是。。劣弧上一点,AP、8尸的延长线分别与以N8为直径的圆交于点C、。,则
CD的长为.
115.在直角梯形N2CD中,AD//BC,NBAD=90。,4D=4,BC=9,以力8为直径的。。与CD相切于
点、E,则弦/E的长为.
116.生活中,有人喜欢把留言便条折成如下图④的形状,折叠过程依图①至图④的顺序所示(阴影部分
表示纸条的反面).
如果图①中的纸条长为30cm,宽为xcm,为了保证能折成图④的形状(即纸条两端均超出点P),那么x
的取值范围是;如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点尸的长
度相等,即最终图形是轴对称图形,那么在开始折叠时起点”与点A的距离为(用x表示).
①②③④
117.已知RtZX/BC中,ZBAC^90°,AB=6,4C=8,是8c边上的中线,将△ABC沿过点C的直线
折叠,折痕分别交48、4)于点E、F.
(1)当点力恰好落在边上时,点E到8c的距离为;
(2)当△C。/5'与尸面积相等时,点F到BC的距离为_____________
A
7^
BDC
118.如图,正方形/8CD的边长为“,两动点E、尸分别从顶点8、C同时出发,以相同速度沿8C、CD
运动,与△BCF相应的△EGa在运动过程中始终保持△EG/7丝△BCF,对应边£G=8C,B、E、C、G在
同一直线上,则的面枳最小值为.
119.已知函数y=ax~+2x+l.
(1)若函数图象与x轴只有一个交点,则。
(2)若方程以2+2X+1=0至少有一正根,则a的取值范围是.
如图,RtA4OB中,。为坐标原点,ZAOB=90°,ZB=30°,如果点N在反比例函数y=5(x>0)
120.
的图象上运动,那么点8在函数(填函数解析式)的图象上运动.
121.如图,直线歹过点4(0,2),且与直线交于点夕(1,加),则不等式组加
mx-2的解集是
122.已知两个二次方程一+2办+1=0和公2+如+1=0中至少有一个有实数解,则实数。的取值范围是
123.如图,在矩形48CO中,E是8c边上的点,连接/E、DE,将△OEC沿线段翻折,点C恰好落
在线段/£上的点尸处.若AB=6,BE:EC=4:1,则线段。E的长为.
A.----------------------.D
F
BE
124.从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生
和一名护士的概率为.
125.如图,将边长为3+小的等边△N5C折叠,折痕为。£,点8与点尸重合,所和。厂分别交4c于
点M、N,。尸_LZ8于。,AD=\,则重叠部分(即四边形。EM7V)的面积为.
126.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚
线进行切割,无缝隙无重叠地拼成图3所示的大正方形,其面积为8+4啦,则图3中线段AB的长为
127.如图,在RtZX/BC中,NC=90。,4c=4,BC=3,为△ABC的内切圆,点。是斜边N8的中
点,则tan/008=.
128.如图,RtZ\/8C中,/C=90。,NC=3,8C=8,顶点8、C分别在x轴、y轴的正半轴上滑动,则
点A到原点。的最大距离为,此时点A的坐标为.
k
129.如图,直线y=—1;x+l与y轴交于点/,与双曲线);=金在第一象限交于8、C两点,设8、C两点
的纵坐标分别为y,处,则y+刃的值为.
130.如图,在梯形中,AB//CD,NZ=90。,4B=3,CD=6,8EJ_BC交直线彳〃于点E.若AABE、
丛CDE与△BCE都相似,则AD的长为.
131.已知关于尤的方程/+瓜+1=0的两实根为a,p,且a>/?,以a~+£~、3a—30、磔为三边的三角形
是等腰三角形,则6=.
b
132.已知抛物线7+6x+c(a>0,6c0),将此抛物线沿x轴方向向左平移一5个单位长度,得到一
条新的抛物线,若直线>=,〃与这两条抛物线有且只有四个交点,则实数机的取值范围是.
133.如图所示,直线y=-x+6与x轴交于点与y轴交于点8,点P为x轴上的动点,且点尸在点“
的左侧,PQLx轴,交直线于点°,动圆C与x轴、y轴、直线Z8和直线P。都相切,且。。在x轴
的上方,则点尸的坐标为.
P~x
134.如图,在直角梯形中,AD//BC,NB=9Q°,AD=\3,8c=16,CD=5,为。。的直径.动
点E、尸分别从“、C两点同时出发,其中点E沿/。以每秒1个单位长度的速度向终点。运动,点?沿
C8以每秒2个单位长度的速度向终点8运动,当其中一点到达终点时,另一点随之停止运动•设运动时
间为/(秒).AE-D
(1)当/=____________________秒时,四边形ER7O为等腰梯形;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024上海市优惠价房购买合同文本
- 咖啡店桌椅订购与安装合同
- 2024年挖机施工协议合同
- 企业承包经营合同书范本
- 2024年购买二手车需谨慎
- 展会与媒体合作协议模板
- 产品制造分许可协议分析
- 个人与企业间借款合同范本
- 成都市白蚁防治工程合同书参考文献
- 广告媒介合同格式参考
- 用户运营指南
- 2020年山东烟台中考满分作文《就这样被打动》9
- 国网员工合同模板
- 建设2台66000KVA全封闭低碳硅锰矿热炉项目竣工环保验收监测调查报告
- 期中核心素质卷(试题)-2024-2025学年数学六年级上册北师大版
- 《Photoshop图像处理》5.《滤镜特效技巧的学习》试卷
- 2024年新人教版数学七年级上册 3.2 求代数式的值 教学课件
- 2025届四川省绵阳市高三第一次调研测试物理试卷含解析
- 华为HCIA OpenEuler H12-611认证必考试复习题库(含答案)
- 《无机化学》课件-第7章 配位化合物
- 2024年秋一年级上册10 ai ei ui 教学设计(表格式3课时)作业设计
评论
0/150
提交评论