版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于复合神经网络的排水系统故障诊断研究摘要:
排水系统是城市基础设施中重要的组成部分,其在城市环境中具有重要的作用,能有效地提高城市环境的质量。但是,排水系统在长期运行过程中会出现各种各样的故障,影响其正常运行。针对这一问题,本文提出了一种基于复合神经网络的排水系统故障诊断方法。
首先,通过对排水系统进行实时监测,获取系统运行数据,并预处理数据以提高数据质量。然后,采用复合神经网络对数据进行训练,以建立故障预测模型。该模型采用多层神经元结构,能够更加准确地预测排水系统未来的故障情况,并给出故障预警提示。最后,通过实验验证,证明该方法能够有效地提高排水系统的运行效率和稳定性。
本文的研究结果为排水系统的故障预防和修复提供了可靠的技术支持,具有很大的应用价值。
关键词:排水系统;故障诊断;复合神经网络;预测模型;实时监测
Abstract:
Thedrainagesystemisanimportantpartofurbaninfrastructure,whichplaysanimportantroleinimprovingthequalityofurbanenvironment.However,variousfaultswilloccurinthedrainagesystemduringitslong-termoperation,whichwillaffectitsnormaloperation.Inordertosolvethisproblem,thispaperproposesafaultdiagnosismethodfordrainagesystembasedoncompositeneuralnetwork.
Firstly,thedrainagesystemismonitoredinrealtimetoobtainsystemoperatingdata,andthedataispreprocessedtoimprovedataquality.Then,thecompositeneuralnetworkisusedtotrainthedatatoestablishafaultpredictionmodel.Themodeladoptsamulti-layercellstructure,whichcanpredictthefuturefaultsofthedrainagesystemmoreaccuratelyandgivefaultwarningtips.Finally,throughexperimentalverification,itisprovedthatthismethodcaneffectivelyimprovetheoperationefficiencyandstabilityofthedrainagesystem.
Theresearchresultsofthispaperprovidereliabletechnicalsupportforfaultpreventionandrepairofdrainagesystem,andhavegreatapplicationvalue.
Keywords:drainagesystem;faultdiagnosis;compositeneuralnetwork;predictionmodel;real-timemonitorinIntroduction
Thedrainagesystemplaysacriticalroleinurbaninfrastructure,whichisresponsiblefordrainingawaystormwaterandwastewater.Awell-functioningdrainagesystemisessentialtopreventfloodingandwaterpollution.However,duetovariousreasonssuchasaging,blockage,anddamage,thedrainagesystemmayfailtoperformadequately.Therefore,itisnecessarytodevelopeffectivemethodsforfaultdiagnosisandpredictiontoensurethestableoperationofthedrainagesystem.
Inrecentyears,manystudieshavefocusedonthefaultdiagnosisofthedrainagesystem.Someresearchershaveproposeddata-drivenmethods,suchasartificialneuralnetworks(ANNs)andsupportvectormachines(SVMs),topredictthefaultstatusofthedrainagesystem.However,thesemethodshavelimitationsintermsofaccuracyandefficiency.Toaddressthisissue,thispaperproposesafaultdiagnosismethodbasedonacompositeneuralnetworkandreal-timemonitoring.
Methodology
Theproposedfaultdiagnosismethodconsistsofthreestages:datapreprocessing,modeltraining,andreal-timemonitoring.Inthedatapreprocessingstage,therawdatafromthedrainagesystemarepreprocessedtoeliminatenoiseandoutliers.Then,theprocesseddataareusedtotrainacompositeneuralnetworkthatcombinestheadvantagesofconvolutionalneuralnetworks(CNNs)andlong-shorttermmemorynetworks(LSTMs).Thecompositeneuralnetworkcaneffectivelycapturethespatiotemporalfeaturesofthedrainagesystemandachievehighaccuracyinfaultdiagnosis.
Inthereal-timemonitoringstage,thetrainedpredictionmodelisdeployedtothedrainagesystemtocontinuouslymonitorthesystem'sperformance.Whenthesystem'sperformancedeviatesfromthenormalstate,thepredictionmodelwillgivefaultwarningtipstotheoperators,indicatingthepossiblecausesandlocationsofthefault.Theoperatorscantakeappropriatemeasurestopreventtheoccurrenceofthefaultorrepairthesystemtimely.
ExperimentalResults
Toevaluatetheeffectivenessoftheproposedmethod,experimentswereconductedonarealdrainagesysteminacityinChina.TheexperimentalresultsshowthatthecompositeneuralnetworkcanachievehigheraccuracythanthetraditionalANNandSVMmethodsinfaultprediction.Moreover,thereal-timemonitoringsystemcaneffectivelyimprovetheoperationefficiencyandstabilityofthedrainagesystem,reducingthefrequencyofsystemfailuresandmaintenancecosts.
Conclusion
Thispaperproposesafaultdiagnosismethodbasedonacompositeneuralnetworkandreal-timemonitoringforthedrainagesystem.Theproposedmethodcanaccuratelypredictthefaultstatusofthedrainagesystemandprovidetimelywarningtipstotheoperators,ensuringthestableoperationofthesystem.Theexperimentalresultsdemonstratetheeffectivenessoftheproposedmethod,whichhasgreatapplicationvalueinthefaultpreventionandrepairofthedrainagesystemInsummary,thefaultdiagnosismethodbasedonacompositeneuralnetworkandreal-timemonitoringforthedrainagesystemisareliableandefficientapproachformaintainingthesmoothoperationofthesystem.Theproposedmethodcombinestheadvantagesofdifferenttypesofneuralnetworksandthereal-timemonitoringsystemtoaccuratelyidentifyfaultsandprovidereliablewarningtipstotheoperators.
Comparedtootherexistingfaultdiagnosismethods,theproposedmethodhasseveraladvantages.Firstly,itcanidentifydifferenttypesoffaultsaccurately,includingpartialblockages,completeblockages,andleakage,whichiscrucialformaintainingthedrainagesystem'ssmoothoperation.Secondly,themethodcanprovidetimelywarningstooperators,whichisessentialtopreventfurtherdamageandavoidcostlyrepairs.Thirdly,theproposedmethodiscomputationallyefficient,makingiteasiertoimplementandruninreal-time.
Overall,theproposedmethodoffersareliableandefficientwaytopreventandrepairfaultsinthedrainagesystem.Futureresearchcouldfocusonapplyingtheproposedmethodtodifferenttypesofdrainagesystemsandinvestigatingtheeffectivenessofthemethodinreal-timeoperations.Additionally,exploringwaystoimprovetheaccuracyandefficiencyofthemethodcouldleadtofurtherimprovementsandapplicationoftheproposedmethodologyOneareaoffutureresearchcouldbeexploringthepotentialuseofmachinelearningalgorithmsinconjunctionwiththeproposedmethodtoimprovetheaccuracyofdetectingandpredictingfaultsinthedrainagesystem.Machinelearningalgorithmscouldbetrainedonlargeamountsofhistoricdatafromthedrainagesystemtoidentifypatternsandtrendsthatmaynotbeimmediatelyapparenttohumanoperators.Thiscouldpotentiallyleadtomoreproactivemaintenanceandrepairstrategies.
Anotherpotentialareaofresearchcouldbeinvestigatingtheeffectivenessoftheproposedmethodinlarger,morecomplexdrainagesystems.Whiletheexperimentsconductedinthisstudywereconductedonasmall-scalesystem,themethodologymaynotnecessarilytranslatetolargersystemswithmorecomplexgeometriesandflowpatterns.Therefore,furtherresearchisneededtodeterminehowtheproposedmethodcouldbeadaptedandoptimizedforlargersystems.
Finally,itmaybebeneficialtoexplorehowtheproposedmethodcouldbeintegratedintoexistingdrainagesystemsandmanagementframeworks.Forexample,couldthemethodbeintegratedwithexistingsupervisorycontrolanddataacquisition(SCADA)systemsthatarecommonlyusedtomonitorandcontrolwaterdistributionsystems?Additionally,howwouldtheproposedmethodfitintoexistingmaintenanceschedulesandoperations?Answeringthesequestionscouldprovidevaluableinsightsintothepracticalityandfeasibilityofimplementingtheproposedmethodinreal-worldscenarios.
Inconclusion,theproposedfault
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度快递收派服务信息化建设合同4篇
- 2025年度个人借款三方担保服务合同规范3篇
- 2025年度个人教育培训合同模板7篇
- 二零二五年度民间担保业务担保期限合同4篇
- 二零二五年度美缝剂研发与应用合作协议4篇
- 数据治理平台建设与应用技术方案
- 2025年度个人贷款合同利息计算合同模板4篇
- 二零二五年度虚拟现实游戏用户免责条款合同范本4篇
- 班级成长报告模板
- 2025年度个人房产买卖合同书(精装修)4篇
- 《呼吸衰竭的治疗》
- 有余数的除法算式300题
- 2024年度医患沟通课件
- 2024年中考政治总复习初中道德与法治知识点总结(重点标记版)
- 2024年手术室的应急预案
- 五年级上册小数除法竖式计算练习300题及答案
- 【外资便利店在我国的经营策略分析案例:以日本罗森便利店为例11000字(论文)】
- 6061铝合金退火工艺
- 教师职业素养与职业发展规划
- 语言规划讲义
- Talent5五大职业性格测试技巧138答案
评论
0/150
提交评论