基于复合神经网络的排水系统故障诊断研究_第1页
基于复合神经网络的排水系统故障诊断研究_第2页
基于复合神经网络的排水系统故障诊断研究_第3页
基于复合神经网络的排水系统故障诊断研究_第4页
基于复合神经网络的排水系统故障诊断研究_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于复合神经网络的排水系统故障诊断研究摘要:

排水系统是城市基础设施中重要的组成部分,其在城市环境中具有重要的作用,能有效地提高城市环境的质量。但是,排水系统在长期运行过程中会出现各种各样的故障,影响其正常运行。针对这一问题,本文提出了一种基于复合神经网络的排水系统故障诊断方法。

首先,通过对排水系统进行实时监测,获取系统运行数据,并预处理数据以提高数据质量。然后,采用复合神经网络对数据进行训练,以建立故障预测模型。该模型采用多层神经元结构,能够更加准确地预测排水系统未来的故障情况,并给出故障预警提示。最后,通过实验验证,证明该方法能够有效地提高排水系统的运行效率和稳定性。

本文的研究结果为排水系统的故障预防和修复提供了可靠的技术支持,具有很大的应用价值。

关键词:排水系统;故障诊断;复合神经网络;预测模型;实时监测

Abstract:

Thedrainagesystemisanimportantpartofurbaninfrastructure,whichplaysanimportantroleinimprovingthequalityofurbanenvironment.However,variousfaultswilloccurinthedrainagesystemduringitslong-termoperation,whichwillaffectitsnormaloperation.Inordertosolvethisproblem,thispaperproposesafaultdiagnosismethodfordrainagesystembasedoncompositeneuralnetwork.

Firstly,thedrainagesystemismonitoredinrealtimetoobtainsystemoperatingdata,andthedataispreprocessedtoimprovedataquality.Then,thecompositeneuralnetworkisusedtotrainthedatatoestablishafaultpredictionmodel.Themodeladoptsamulti-layercellstructure,whichcanpredictthefuturefaultsofthedrainagesystemmoreaccuratelyandgivefaultwarningtips.Finally,throughexperimentalverification,itisprovedthatthismethodcaneffectivelyimprovetheoperationefficiencyandstabilityofthedrainagesystem.

Theresearchresultsofthispaperprovidereliabletechnicalsupportforfaultpreventionandrepairofdrainagesystem,andhavegreatapplicationvalue.

Keywords:drainagesystem;faultdiagnosis;compositeneuralnetwork;predictionmodel;real-timemonitorinIntroduction

Thedrainagesystemplaysacriticalroleinurbaninfrastructure,whichisresponsiblefordrainingawaystormwaterandwastewater.Awell-functioningdrainagesystemisessentialtopreventfloodingandwaterpollution.However,duetovariousreasonssuchasaging,blockage,anddamage,thedrainagesystemmayfailtoperformadequately.Therefore,itisnecessarytodevelopeffectivemethodsforfaultdiagnosisandpredictiontoensurethestableoperationofthedrainagesystem.

Inrecentyears,manystudieshavefocusedonthefaultdiagnosisofthedrainagesystem.Someresearchershaveproposeddata-drivenmethods,suchasartificialneuralnetworks(ANNs)andsupportvectormachines(SVMs),topredictthefaultstatusofthedrainagesystem.However,thesemethodshavelimitationsintermsofaccuracyandefficiency.Toaddressthisissue,thispaperproposesafaultdiagnosismethodbasedonacompositeneuralnetworkandreal-timemonitoring.

Methodology

Theproposedfaultdiagnosismethodconsistsofthreestages:datapreprocessing,modeltraining,andreal-timemonitoring.Inthedatapreprocessingstage,therawdatafromthedrainagesystemarepreprocessedtoeliminatenoiseandoutliers.Then,theprocesseddataareusedtotrainacompositeneuralnetworkthatcombinestheadvantagesofconvolutionalneuralnetworks(CNNs)andlong-shorttermmemorynetworks(LSTMs).Thecompositeneuralnetworkcaneffectivelycapturethespatiotemporalfeaturesofthedrainagesystemandachievehighaccuracyinfaultdiagnosis.

Inthereal-timemonitoringstage,thetrainedpredictionmodelisdeployedtothedrainagesystemtocontinuouslymonitorthesystem'sperformance.Whenthesystem'sperformancedeviatesfromthenormalstate,thepredictionmodelwillgivefaultwarningtipstotheoperators,indicatingthepossiblecausesandlocationsofthefault.Theoperatorscantakeappropriatemeasurestopreventtheoccurrenceofthefaultorrepairthesystemtimely.

ExperimentalResults

Toevaluatetheeffectivenessoftheproposedmethod,experimentswereconductedonarealdrainagesysteminacityinChina.TheexperimentalresultsshowthatthecompositeneuralnetworkcanachievehigheraccuracythanthetraditionalANNandSVMmethodsinfaultprediction.Moreover,thereal-timemonitoringsystemcaneffectivelyimprovetheoperationefficiencyandstabilityofthedrainagesystem,reducingthefrequencyofsystemfailuresandmaintenancecosts.

Conclusion

Thispaperproposesafaultdiagnosismethodbasedonacompositeneuralnetworkandreal-timemonitoringforthedrainagesystem.Theproposedmethodcanaccuratelypredictthefaultstatusofthedrainagesystemandprovidetimelywarningtipstotheoperators,ensuringthestableoperationofthesystem.Theexperimentalresultsdemonstratetheeffectivenessoftheproposedmethod,whichhasgreatapplicationvalueinthefaultpreventionandrepairofthedrainagesystemInsummary,thefaultdiagnosismethodbasedonacompositeneuralnetworkandreal-timemonitoringforthedrainagesystemisareliableandefficientapproachformaintainingthesmoothoperationofthesystem.Theproposedmethodcombinestheadvantagesofdifferenttypesofneuralnetworksandthereal-timemonitoringsystemtoaccuratelyidentifyfaultsandprovidereliablewarningtipstotheoperators.

Comparedtootherexistingfaultdiagnosismethods,theproposedmethodhasseveraladvantages.Firstly,itcanidentifydifferenttypesoffaultsaccurately,includingpartialblockages,completeblockages,andleakage,whichiscrucialformaintainingthedrainagesystem'ssmoothoperation.Secondly,themethodcanprovidetimelywarningstooperators,whichisessentialtopreventfurtherdamageandavoidcostlyrepairs.Thirdly,theproposedmethodiscomputationallyefficient,makingiteasiertoimplementandruninreal-time.

Overall,theproposedmethodoffersareliableandefficientwaytopreventandrepairfaultsinthedrainagesystem.Futureresearchcouldfocusonapplyingtheproposedmethodtodifferenttypesofdrainagesystemsandinvestigatingtheeffectivenessofthemethodinreal-timeoperations.Additionally,exploringwaystoimprovetheaccuracyandefficiencyofthemethodcouldleadtofurtherimprovementsandapplicationoftheproposedmethodologyOneareaoffutureresearchcouldbeexploringthepotentialuseofmachinelearningalgorithmsinconjunctionwiththeproposedmethodtoimprovetheaccuracyofdetectingandpredictingfaultsinthedrainagesystem.Machinelearningalgorithmscouldbetrainedonlargeamountsofhistoricdatafromthedrainagesystemtoidentifypatternsandtrendsthatmaynotbeimmediatelyapparenttohumanoperators.Thiscouldpotentiallyleadtomoreproactivemaintenanceandrepairstrategies.

Anotherpotentialareaofresearchcouldbeinvestigatingtheeffectivenessoftheproposedmethodinlarger,morecomplexdrainagesystems.Whiletheexperimentsconductedinthisstudywereconductedonasmall-scalesystem,themethodologymaynotnecessarilytranslatetolargersystemswithmorecomplexgeometriesandflowpatterns.Therefore,furtherresearchisneededtodeterminehowtheproposedmethodcouldbeadaptedandoptimizedforlargersystems.

Finally,itmaybebeneficialtoexplorehowtheproposedmethodcouldbeintegratedintoexistingdrainagesystemsandmanagementframeworks.Forexample,couldthemethodbeintegratedwithexistingsupervisorycontrolanddataacquisition(SCADA)systemsthatarecommonlyusedtomonitorandcontrolwaterdistributionsystems?Additionally,howwouldtheproposedmethodfitintoexistingmaintenanceschedulesandoperations?Answeringthesequestionscouldprovidevaluableinsightsintothepracticalityandfeasibilityofimplementingtheproposedmethodinreal-worldscenarios.

Inconclusion,theproposedfault

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论