初中数学-18.2勾股定理的逆定理教学课件设计_第1页
初中数学-18.2勾股定理的逆定理教学课件设计_第2页
初中数学-18.2勾股定理的逆定理教学课件设计_第3页
初中数学-18.2勾股定理的逆定理教学课件设计_第4页
初中数学-18.2勾股定理的逆定理教学课件设计_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

X勾股定理的逆定理古埃及人曾用下面的方法得到直角:用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。324252+=345直角三角形探索新知下面的两组数分别是一个三角形的三边长a,b,c:5cm,12cm,13cm;6cm,8cm,10cm。(1)这两组数都满足吗?(2)画出图形,它们都是直角三角形吗?动手画一画勾股定理的逆命题

如果直角三角形两直角边分别为a,b,斜边为c,那么有a2+b2=c2勾股定理

如果三角形的三边长a、b、c满足那么这个三角形是直角三角形。a2+b2=c2互逆命题(1)两条直线平行,内错角相等.(2)对顶角相等.(3)全等三角形的对应角相等.说出下列命题的逆命题.这些命题的逆命题成立吗?逆命题:内错角相等,两条直线平行.

成立逆命题:如果两个角相等,那么这两个角是对顶角.

不成立逆命题:对应角相等的两个三角形是全等三角形.

不成立感悟:

一个命题是真命题,它逆命题却不一定是真命题.

牛刀小试证明:画一个△A′B′C′,使C′A′=b,B′C′=a,∠C′=900.已知:在△ABC中,AB=c,BC=a,CA=b

且a2+b2=c2.求证:∠C=90°ACB勾股定理的逆命题

如果三角形的三边长a、b、c满足那么这个三角形是直角三角形。a2+b2=c2A′C′B′a∵∠C′=900∴A′B′2=a2+b2∵a2+b2=c2∴A′B′2=c2∴A′B′=c∵边长取正值∴∠C=∠C′=90°

∴△ABC≌△A′B′C′(SSS)BC=a=B′C′CA=b=C′A′AB=c=A′B′在△ABC和△A′B′C′已知:在△ABC中,AB=cBC=aCA=b且a2+b2=c2证明:画一个△A′B′C′,使∠C=′900,B′C′=a,C′A′=b求证:△ABC是直角三角形A′B′C′aACB勾股定理的逆命题

如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2勾股定理

如果三角形的三边长a、b、c满足那么这个三角形是直角三角形。a2+b2=c2互逆命题逆定理定理判断由a、b、c组成的三角形是不是直角三角形:

(1)a=15,b=8,

c=17例题解析(2)a=4,b=5,

c=6分析:由勾股定理的逆定理,判断三角形是不是直角三角形,只要看两条较小边的平方和是否等于最大边的平方。

(4)a:b:c=3:4:5

(3)a=1b=2c=

像15,8,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数。13ABCDABCD34512一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角。工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?拓展应用BA、锐角三角形B、直角三角形C、钝角三角形D、等边三角形拓展延伸已知:如图,四边形ABCD中,∠B=900,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积?ABCDS四边形ABCD=36中考链接3413125△ABC三边a,b,c为边向外作正方形,以三边为直径作半圆,若S1+S2=S3成立,则是直角三角形吗?ACabcS1S2S3BABCab

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论