版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常见废水处理技术方法1、物理处理法(1)熟悉筛滤法:格栅过滤、筛网过滤、颗粒介质过滤、微滤机过滤A、格栅过滤格栅栅条间的空隙宽度可根据清除污物的方式和水泵的要求来设定,人工清除格栅间隙一般为16~25mm。沉砂池或沉淀池前的格栅一般采用15~30mm,最大为40mm。常用的机械清渣设备有三种,即链条式、移动式及钢丝绳牵引式格栅清污机。格栅是一组(或多组)相平行的金属栅条与框架组成,倾斜安装在进水的渠道,或进水泵站集水井的进口处,以拦截污水中较大的悬浮物及杂质,以保证后续处理构筑物或设备的正常工作。按格栅栅条间距的大小不同,格栅分为粗格栅、中格栅和细格栅3类。按格栅的清渣方法,有人工格栅、机械格栅和水力清除格栅三种。按格栅构造特点不同可分为抓耙式、循环式、弧形、回转式、转鼓式、旋转式、齿耙式和阶梯式等多种形式。格栅设备一般用于污水处理的进水渠道上或提升泵站集水池的进口处,主要作用是去除污水中较大的悬浮或漂浮物,以减轻后续水处理工艺的处理负荷,并起到保护水泵、管道、仪表等作用。当拦截的栅渣量大于0.2m³/d时,一般采用机械清渣方式;栅渣量小于0.2m³/d时,可采用人工清渣方式,也可采用机械清渣方式。格栅机:通过格栅将固体与液体分离的一种除污机械。建设部标准的解释是:用机械的方法,将格栅截留的栅渣清捞出水面的设备。按格栅形式分类1)弧形格栅除污机一种固定格栅除污机,其栅条为圆弧形(近视1/4圆周),齿耙在驱动装置驱动下,沿圆弧形栅条将污物推至栅条上方,实现污渣清除。2)倾斜格栅除污机3)垂直格栅除污机按齿耙垂直向动作的型式分类1)臂式格栅除污机2)链式格栅除污机3)钢索牵引式格栅除污机4)旋转格栅除污机B、颗粒介质过滤普通快滤池rapidfilter应用石英砂或白煤、矿石等粒状滤料对自来水进行快速过滤而达到截留水中悬浮固体和部分细菌、微生物等目的的池子。应用最广的给水过滤设备,用以除去水中经过混凝沉淀处理后残余悬浮物,或水中经过凝聚处理后的悬浮物。快滤池出水的浑浊度可达1度以下。快滤池也可以做成压力罐式称压力滤池。压力滤池可插入压力管线,因此可直接供水。为了节省常规滤池的阀门和管廊的造价以及操作的简化,50年代以后发展了多种形式的快滤池,如无阀滤池、双阀滤池、虹吸滤池和移动冲洗罩滤池等。微滤机过滤微滤机是采用80~200目/平方英寸的微孔筛网固定在转鼓型过滤设备上,通过截留养殖水体中固体颗粒,实现固液分离的净化装置。并且在过滤的同时,可以通过转鼓的转动和反冲水的作用力,使微孔筛网得到及时的清洁。使设备始终保持良好的工作状态。设备应用:在水产养殖领域,微滤机更多用在对原水的第一级过滤上,以滤除水中的大颗粒泥沙、悬浮藻类、颗粒等。或者用在密闭循环净化的第一级粗滤环节。(2)熟悉重力法:沉砂池、沉淀池、隔油池一、沉砂池污水在迁移、流动和汇集过程中不可避免会混入泥砂。污水中的砂如果不预先沉降分离去除,则会影响后续处理设备的运行。最主要的是磨损机泵、堵塞管网,干扰甚至破坏生化处理工艺过程。沉砂池主要用于去除污水中粒径大于0.2mm,密度大于2.65t/立方米的砂粒,以保护管道、阀门等设施免受磨损和阻塞。其工作原理是以重力分离为基础,故应控制沉砂池的进水流速,使得比重大的无机颗粒下沉,而有机悬浮颗粒能够随水流带走。沉砂池主要有平流沉砂池、曝气沉砂池、旋流沉砂池等。现代设计的主要有旋流沉砂池。1.1沉砂池在污水处理中的作用虽然沉砂池在污水处理厂的投资、占地等方面所占的比例很小,但其作用却不可忽视。若取消沉砂池,大量砂粒将进入后续各处理单元,给污水厂的正常运行带来诸多隐患:①砂粒进入初沉池会加速污泥刮板的磨损,缩短使用寿命。②排泥管道中砂粒的沉积易导致管道的堵塞,进入污泥泵后会加剧叶轮磨损。③对于不设初沉池的处理工艺(如氧化沟、CASS等)或实际运行中由于进水负荷过低而超越初沉池运行的工艺,大量砂粒将直接进入生化池沉积,导致生化池有效容积的减少,同时还会对曝气器产生不利影响。④砂粒进入污泥消化池中,将减少有效容积,缩短清理周期。⑤污泥中含砂量的增加会大大影响污泥脱水设备的运行。砂粒进入带式脱水机会加剧滤布的磨损,缩短更换周期,同时会影响絮凝效果,降低污泥成饼率。近年来卧螺式离心机在城市污水处理厂中的应用日益广泛,由于该设备采用高速离心分离的方式,砂粒会大大加剧转筒、螺旋等处的磨损。1.2沉砂池设计的统一原则:城市污水厂一般均应设置沉砂池,座数或分格数应不少于2座(格),并按并联运行原则考虑。设计流量应按分期建设考虑:
a)当污水自流进入时,应按每期的最大设计流量计算;
b)当污水为用提升泵送入时,则应按每期工作水泵的最大组合流量计算;
c)合流制处理系统中,应按降雨时的设计流量计算。沉砂池去除的砂粒杂质是以比重为2.65吨/立方米,粒径为0.2mm以上的颗粒为主。城市污水的沉砂量可按每10万立方米污水沉砂量为30立方米计算,其含水率为60%,容量为1500kg/立方米。贮砂斗槔容积应按2日沉砂量计算,贮砂斗池壁与水平面的倾角不应小于55°排砂管直径应不小于0.3m。沉砂池的超高不宜小于0.3m。除砂一般宜采用机械方法。当采用重力排砂时,沉砂池和晒砂厂应尽量靠近,以缩短排砂管的长度。污水的沉砂量,可按每立方米污水0.03L计算;合流制污水的沉砂量应根据实际情况确定。沉砂池除砂宜采用机械方法,并经砂水分离后贮存或外运。采用人工排砂时,排砂管直径不应小于200mm。排砂管应考虑防堵塞措施。1.3平流沉砂池的设计,应符合下列要求:最大流速应为0.3m/s,最小流速应为0.15m/s;最高时流量的停留时间不应小于30s;有效水深不应大于1.2m,每格宽度不宜小于0.6m。1.4曝气沉砂池的设计,应符合下列要求:水平流速宜为0.1m/s;最高时流量的停留时间应大于2min;有效水深宜为2.0~3.0m,宽深比宜为1~1.5;处理每立方米污水的曝气量宜为0.1~0.2m³空气;进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并宜设置挡板。1.5旋流沉砂池的设计,应符合下列要求:最高时流量的停留时间不应小于30s;设计水力表面负荷宜为150~200m³/(m2•h);有效水深宜为1.0~2.0m,池径与池深比宜为2.0~2.5;池中应设立式桨叶分离机。二、沉淀池沉淀池设计数据沉淀池类型沉淀时间(h)初次沉淀池二次沉淀池生物膜法后二次沉淀池活性污泥法后表面水力负荷[m³/(m2·h)]0.5~2.01.5~4.01.0~2.01.5~4.00.6~1.5每人每日污泥量(g/人·d)1.5~4.510~2612~32污泥含水率(%)16~3696~9899.2~99.6固体负荷[kg/(m2·d)]95~97≤150≤1502.1基本原则沉淀池的超高不应小于0.3m。沉淀池的有效水深宜采用2.0~4.0m。当采用污泥斗排泥时,每个污泥斗均应设单独的闸阀和排泥管。污泥斗的斜壁与水平面的倾角,方斗宜为60°,圆斗宜为55°。初次沉淀池的污泥区容积,除设机械排泥的宜按4h的污泥量计算外,宜按不大于2d的污泥量计算。活性污泥法处理后的二次沉淀池污泥区容积,宜按不大于2h的污泥量计算,并应有连续排泥措施;生物膜法处理后的二次沉淀池污泥区容积,宜按4h的污泥量计算。排泥管的直径不应小于200mm。当采用静水压力排泥时,初次沉淀池的静水头不应小于1.5m;二次沉淀池的静水头,生物膜法处理后不应小于1.2m,活性污泥法处理池后不应小于0.9m。初次沉淀池的出口堰最大负荷不宜大于2.9L/(s·m);二次沉淀池的出水堰最大负荷不宜大于1.7L/(s·m)。2.2平流沉淀池的设计,应符合下列要求:每格长度与宽度之比不宜小于4,长度与有效水深之比不宜小于8,池长不宜大于60m;宜采用机械排泥,排泥机械的行进速度为0.3~1.2m/min;缓冲层高度,非机械排泥时为0.5m,机械排泥时,应根据刮泥板高度确定,且缓冲层上缘宜高出刮泥板0.3m;池底纵坡不宜小于0.01。2.3竖流沉淀池的设计,应符合下列要求:水池直径(或正方形的一边)与有效水深之比不宜大于3;中心管内流速不宜大于30mm/s;中心管下口应设有喇叭口和反射板,板底面距泥面不宜小于0.3m。2.4辐流沉淀池的设计,应符合下列要求:水池直径(或正方形的一边)与有效水深之比宜为6~12,水池直径不宜大于50m;宜采用机械排泥,排泥机械旋转速度宜为1~3r/h,刮泥板的外缘线速度不宜大于3m/min。当水池直径(或正方形的一边)较小时也可采用多斗排泥;缓冲层高度,非机械排泥时宜为0.5m;机械排泥时,应根据刮泥板高度确定,且缓冲层上缘宜高出刮泥板0.3m;坡向泥斗的底坡不宜小于0.05。2.5升流式异向流斜管(板)沉淀池的设计,应符合下列要求:升流式异向流斜管(板)沉淀池的设计表面水力负荷,一般可按普通沉淀池的设计表面水力负荷的2倍计;但对于二次沉淀池,尚应以固体负荷核算。斜管孔径(或斜板净距)宜为80~100mm;斜管(板)斜长宜为1.0~1.2m;斜管(板)水平倾角宜为60°;斜管(板)区上部水深宜为0.7~1.0m;斜管(板)区底部缓冲层高度宜为1.0m。斜管(板)沉淀池应设冲洗设施。(3)熟悉离心法:离心分离的原理、离心分离方式2、化学处理法(1)掌握中和法:中和及pH调节的基本原理、常见的几种中和法(2)了解化学沉淀法:化学沉淀的基本原理、常见沉淀法的应用(3)熟悉氧化还原与消毒:氧化—还原反应原理、常用氧化剂下面是倒换电极和脉冲点解(4)熟悉吸附法:吸附法基本原理、常见吸附工艺及设备吸附法在城市污水处理中的应用(5)了解电解法:电解法工艺原理及流程、常用电解法类型3、物理化学法(1)了解离子交换法:离子交换反应原理、离子交换剂的种类和性质离子交换树脂的原理离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为2R—SO3H+Ca2+—(R—SO3)2Ca+2H+这也是硬水软化的原理。阴离子交换树脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团。它们在水中能生成OH-离子,可与各种阴离子起交换作用,其交换原理为R—N(CH3)3OH+Cl-R—N(CH3)3Cl+OH-由于离子交换作用是可逆的,因此用过的离子交换树脂一般用适当浓度的无机酸或碱进行洗涤,可恢复到原状态而重复使用,这一过程称为再生。阳离子交换树脂可用稀盐酸、稀硫酸等溶液淋洗;阴离子交换树脂可用氢氧化钠等溶液处理,进行再生。离子交换树脂的用途很广,主要用于分离和提纯。例如用于硬水软化和制取去离子水、回收工业废水中的金属、分离稀有金属和贵金属、分离和提纯抗生素等。离子交换树脂的基本类型(1)强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。(2)弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。(3)强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。(4)弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。(5)离子树脂的转型以上是树脂的四种基本类型。在实际使用上,常将这些树脂转变为其他离子型式运行,以适应各种需要。例如常将强酸性阳离子树脂与NaCl作用,转变为钠型树脂再使用。工作时钠型树脂放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。这种树脂以钠型运行使用后,可用盐水再生(不用强酸)。又如阴离子树脂可转变为氯型再使用,工作时放出Cl-而吸附交换其他阴离子,它的再生只需用食盐水溶液。氯型树脂也可转变为碳酸氢型(HCO3-)运行。强酸性树脂及强碱性树脂在转变为钠型和氯型后,就不再具有强酸性及强碱性,但它们仍然有这些树脂的其他典型性能,如离解性强和工作的pH范围宽广等。离子交换树脂的构造和特性(2)熟悉膜分离技术:电渗析、反渗透、超滤A、电渗析原理渗析是指溶液中溶质通过半透膜的现象。自然渗析的推动力是半透膜两侧溶质的浓度差。在直流电场的作用下,离子透过选择性离子交换膜的现象称为电渗析。离子交换膜是由高分子材料制成的对离子具有选择透过性的薄膜。主要分阳离子交换膜(CM,简称阳膜)和阴离子交换膜(AM,简称阴膜)两种。阳膜由于膜体固定基带有负电荷离子,可选择透过阳离子;阴膜由于膜体固定基带有正电荷离子,可选择透过阴离子。阳膜透过阳离子,阴膜透过阴离子的性能称为膜的选择透过性。电渗析过程最基本的工作单元称为膜对。一个膜对构成一个脱盐室和一个浓缩室。一台实用电渗析器由数百个膜对组成。图3.2-1简明地示出电渗析器工作原理。电渗析器的主要部件为阴、阳离子交换膜,隔板与电极三部分。隔板构成的隔室为液流经过的通道。淡水经过的隔室为脱盐室,浓水经过的隔室为浓缩室。若把阴、阳离子交换膜与浓、淡水隔板交替排列,重复叠加,再加上一对端电极,就构成了一台实用电渗析器。若电渗析器各系统进液都为NaCl溶液,在通电情况下,淡水隔室中的Na+向阴极方向迁移,Cl-向阳极方向迁移,Na+与Cl-就分别透过CM与AM迁移到相邻的隔室中去。这样淡水隔室中的NaCl溶液浓度便逐渐降低。相邻隔室,即浓水隔室中的NaCl溶液浓度相应逐渐升高,从电渗析器中就能源源不断地流出淡化液与浓缩液。淡水水路系统、浓水水路系统与极水水路系统的液流由水泵供给,互不相混,并通过特殊设计的布、集水机构使其在电渗析内部均匀分布,稳定流动。从供电网供给的交流电,经整流器变为直流电,由电极引入电渗析器。经过在电极溶液界面上的电化学反应,完成由电子导电转化为离子导电的过程。用夹紧板紧固在一起的膜堆部分称为电渗析器。电渗析要进行工作,必须有水泵、整流器等辅助设备,还必须有进水预处理设施。通常把电渗析器及辅助设备总称为电渗析装置。就过程基本原理而言,电渗析技术至少有以下四方面的用途。(1)从电解质溶液中分离出部分离子,使电解质溶液的浓度降低。如海水、苦咸水淡化制取饮用水与工业用水;工业用初级纯水的制备;废水处理等。特别苦咸水淡化是目前电渗析技术最成熟、应用最广泛的领域。(2)把溶液中部分电解质离子转移到另一溶液系统中去,并使其浓度增高。海水浓缩制盐是这方面成功应用的典型例子。又如化工产品的精制、工业废液中有用成分的回收等也属于这方面的应用。(3)从有机溶液中去除电解质离子。目前主要用于食品和医药工业。在乳清脱盐、糖类脱盐和氨基酸精制中应用得比较成功。(4)电解质溶液中同电性具有不同电荷的离子的分离和同电性同电荷离子的分离。使用只允许一价离子透过的离子交换膜浓缩海水制盐,是前者工业化应用的实例;后者因无实用的膜,处于开发研究阶段,如卤水中锂的分离已研究多年。B、反渗透原理反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。反渗透装置(简称RO装置)在除盐系统中属关键设备,装置利用膜分离技术除去水中大部份离子、SiO2等,大幅降低TDS、减轻后续除盐设备的运行负荷。RO是将原水中的一部分沿与膜垂直的方向通过膜,水中的盐类和胶体物质将在膜表面浓缩,剩余一部分原水沿与膜平行的方向将浓缩的物质带走,在运行过程中自清洗。膜元件的水通量越大,回收率越高则其膜表面浓缩的程度越高,由于浓缩作用,膜表面处的物质溶度高于主体水流中物质浓度,产生所谓的浓差极化现象。浓差极化会使膜表面盐的浓度高,增大膜的渗透压,引起盐透过率增大,为提高给水的压力而需要多消耗能量,因此在运行过程中必须采用合适的措施(例如增大浓水侧水的湍流度)减少浓差极化的程度。RO膜进水水质标准进水压力≥0.2MPa进水温度5~40℃进水pH=4~9总溶解性固体TDS≤1000mg/L余氯≤0.05mg/LSDI≤5总铁Fe≤0.1mg/LCOD≤1.5mg/LTOC≤2mg/LNTU≤0.5mg/L影响反渗透性能的因素进水水质的影响a、色度、浊度和胶体有机物:悬浮物和胶体物质非常容易堵塞RO膜,使透水率很快下降,脱盐率降低;b、氧化剂:氧化剂会使复合膜性能恶化,水中含游离氯时,通常用活性炭吸附或加注还原剂,使游离氯还原到指标值以下;c、PH值:控制PH值的目的主要是防止(CaCO3)析出后形成水垢;d、铁、锰、铝等重金属氧化物:其含量高时,在膜表面易形成氢氧化物胶体,产生沉积现象;e、细菌、微生物:细菌繁殖会污染膜并恶化水质;f、硫酸根(SO42-),二氧化硅(SiO2):水中含有多量硫酸根时,易产生硫酸钙沉淀,含有多量SiO2时,也易产生沉淀,为防止沉淀,当浓水CaSO4溶度积>19×10-5时,可加注六偏磷酸钠,尽量避免浓水中SiO2含量超过100mg/L。运行因素的影响a、压力渗透液通量随作用压力成线型增加,而渗透液的含盐量随作用压力而减少。b、温度若其他参数保持固定只增加温度,渗透液通量及盐通过量都随之增加,但渗透液通量变化更为明显(见图3),一般来说,温度每提高1℃,透水量增加1-3%,而一般膜的额定通量是在25℃时给出的,下表8标示了不同温度下产水量修正系数。实际产水量=额定产水量(25℃时)/修正系数。C、超滤原理超滤是采用中空纤维过滤新技术,配合三级预处理过滤清除自来水中杂质;超滤微孔小于0.01微米,能彻底滤除水中的细菌、铁锈、胶体等有害物质,保留水中原有的微量元素和矿物质。超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。超滤原理也是一种膜分离过程原理,超滤利用一种压力活性膜,在外界推动力(压力)作用下截留水中胶体、颗粒和分子量相对较高的物质,而水和小的溶质颗粒透过膜的分离过程。通过膜表面的微孔筛选可截留分子量为30000—10000的物质。当被处理水借助于外界压力的作用以一定的流速通过膜表面时,水分子和分子量小于300—500的溶质透过膜,而大于膜孔的微粒、大分子等由于筛分作用被截留,从而使水得到净化。也就是说,当水通过超滤膜后,可将水中含有的大部分胶体硅除去,同时可去除大量的有机物等。超滤原理并不复杂。在超滤过程中,由于被截留的杂质在膜表面上不断积累,会产生浓差极化现象,当膜面溶质浓度达到某一极限时即生成凝胶层,使膜的透水量急剧下降,这使得超滤的应用受到一定程度的限制。为此,需通过试验进行研究,以确定最佳的工艺和运行条件,最大限度地减轻浓差极化的影响,使超滤成为一种可靠的反渗透预处理方法。(3)了解其它:萃取法、吹脱法、汽体法一、吹脱法吹脱法的基本原理是:将空气通入废水中,改变有毒有害气体溶解于水中所建立的气液平衡关系,使这些挥发物质由液相转为气相,然后予以收集或者扩散到大气中去。吹脱过程属于传质过程;其推动力为废水中挥发物质的浓度与大气中该物质的浓度差。
吹脱法用于去除废水中的CO2、H2S、HCN、CS2等溶解性有毒有害气体。吹脱曝气既可以脱除原来存于废水中的溶解气体,也可以脱除化学转化而形成的溶解气体。例如,废水中的硫化钠和氰化钠是固态盐在水中的溶解物,在酸性条件下,由于它们离解生成的S2-和CN-离子能和H+离子反应生成H2S和HCN,经过曝气吹脱,就可以将它们以气体形式脱除。这种吹脱曝气称为转化吹脱法。用吹脱法处理废水的过程中,污染物不断地由液相转入气相,易引起二次污染,防止的方法有以下三类:(1)中等浓度的有害气体,可以导入炉内燃烧;(2)高浓度的有密气体应回收利用;(3)符合排放标准时,可以向大气排放。吹脱设备类型很多,经常使用的为强化式吹脱池(鼓泡池)和塔式吹脱装置(吹脱塔)。二、汽提法汽提法的基本原理与吹脱法相同,只是所使用的介质不是空气而是水蒸气。即使用水蒸气与废水直接接触,将废水中的挥发性有毒有害物质按一定比例扩散到气相中去,从而达到从废水中分离污染物的目的。汽提法分离污染物的机理视活染物的性质而异;一般可归纳为以下两种:(1)简单蒸馏
对于与水互溶的挥发性物质,利用其在气液平衡条件下,在气相中的浓度大于在液相中的浓度这一特性,通过蒸气直接加热,使其在沸点(水与挥发物两沸点之间的某一温度)下按一定比例富集于气相。(2)蒸气蒸馏
对于与水不互溶或几乎不互溶的挥发性污染物质,利用混合液的沸点低于两组分沸点这一特性,可将高沸点挥发物在较低温度下加以分离除去。例如,废水今的松节油、苯胺、酚、硝基苯等物质,在低于100℃的条件下,应用蒸气蒸馏法可将其有效脱除。
汽提通常都在封闭的塔内进行。重要的汽提塔有两大类:填料塔和板式塔。本节将重点介绍各种板式塔。板式塔是一种传质效率比填料塔更高的设备。这称塔的关键部件是塔板。根据塔板结构的不同,又可分为泡罩塔、浮阀塔、筛板塔、舌形塔和浮动喷射塔等,其中前三种应用较广。三、萃取法废水萃取处理法是废水物理化学处理法之一种。利用萃取剂,通过萃取作用使废水净化的方法。根据一种溶剂对不同物质具有不同溶解度这一性质,可将溶于废水中的某些污染物完全或部分分离出来。向废水中投加不溶于水或难溶于水的溶剂(萃取剂),使溶解于废水中的某些污染物(被萃取物)经萃取剂和废水两液相间界面转入萃取剂中以净化废水的方法。萃取处理法一般用于处理浓度较高的含酚或含苯胺、苯、醋酸等工业废水。萃取方法和设备液-液萃取操作流程分为三个步骤:混合:使废水和萃取剂最大限度地接触;分离:使轻、重液层完全分离;萃取剂再生:萃取后,分离出被萃取物,回收萃取剂,重复使用。按废水和萃取剂的接触情况,萃取操作分为间歇萃取和连续萃取两类。间歇萃取一般采用多段逆流方式,使待萃取的废水与将近饱和的萃取剂相遇,而新的萃取剂与经过几段萃取后的稀废水相遇。这种方式采用的设备多为搅拌萃取器,容器中装有旋桨式或涡轮式搅拌器,通过搅拌,使两液相充分混合、接触,然后静置一段时间,轻重液分层,分别放出。这种方法设备简单,可节省萃取剂,但生产能力低,可用于处理间歇排出的少量废水。连续萃取多采用塔式装置,常用的有往复筛板萃取塔、转盘萃取塔和离心萃取机等。①往复筛板萃取塔:分三个部分,塔上下两部分是分离室,中间是萃取段,废水由塔上部进入,萃取剂由塔下部进入。萃取段装有一根纵向轴,轴上装有若干块穿孔筛板,由塔顶电动机的偏心轮带动上下运动,造成两液相之间的湍流条件,使萃取剂和废水充分混合,强化传质过程。萃取后废水和萃取剂由于比重差而分离,萃取剂由塔顶流出,废水则由塔底流出。这种萃取塔(图1)用于煤气厂、焦化厂的氨水脱酚工艺,以及用于化工厂从废水中回收苯、酚和制药厂回收氨基吡啶等。②转盘萃取塔:塔型同上述往复筛板萃取塔,也分三部分,上下两部分是分离室,中间是萃取段(图2)。萃取段无筛板,而在塔身上每隔一定距离有一环状隔板,中心轴上有若干块圆盘,圆盘随轴转动,通过剧烈的搅拌将萃取液分散成细小颗粒。这种塔的特点是生产能力大,如萃取要求不高,而所需处理的废水量较大,则可采用。③离心萃取机:最简单的离心萃取器是将离心水泵和沉淀分离设备配合起来使用,但在萃取过程中容易产生乳化现象,因此运用离心原理研制成离心萃取机(图3)。萃取机中有一个转鼓,内有多层同心圆筒,每层都有许多孔口。萃取剂由外层的同心圆筒进入,废水液由内层的同心圆筒进入。由于转鼓高速旋转产生的离心力,废水由里向外,萃取剂由外向里流动,进行连续的对流混合和分离。在离心萃取机中产生的离心力约为重力的1000~4000倍,足以使萃取剂和水分离而实现高效的萃取。上述三种萃取设备中,往复筛板萃取塔设备简单,传质效果尚好,使用较多。离心萃取机设备紧凑,占地小,效率高,但电耗大,设备加工复杂,有待改进。被萃取物从萃取剂中分离出来后,萃取剂可重复使用。再生方法有:①蒸馏:利用萃取剂和被萃取物的沸点差别进行分离。②投加化学药剂:使被萃取物转化成不溶于萃取剂的盐类。4、生物处理法(1)掌握活性污泥法:动力学基础、常用活性污泥法工艺流程、净化机理与过程活性污泥净化反应过程1初期吸附去除污水与活性污泥接触5~10min,污水中大部分有机物(70%以上的BOD,75%以上COD)迅速被去除。此时的去除并非降解,而是被污泥吸附,粘着在生物絮体的表面,这种由物理吸附和生物吸附交织在一起的初期高速去除现象叫初期吸附。吸附速度取决于:微生物的活性程度——饥饿程度,衰亡期最强;水动力学条件:泥水接触或混合越迅速、越均匀、液膜更新越快,接触时间越长则越好;泥水接触水力学状态以湍流或紊流为好,但过大会击碎絮体。2微生物的代射被吸附的有机物粘附在絮体表面,与微生物细胞接触,在渗透膜的作用下,进入细胞体内,并在酶的作用下或者被降解,或者被同化成细胞本身。a、分解代谢:CXHYOZ+(X+0.25Y-0.5Z)O2→XCO2+0.5H2O+Qb、合成代谢:nCXHYOZ+nNH3+n(X+0.25Y-0.5Z)O2→(C5H7NO2)n+n(X-5)CO2+0.5n(Y-4)H2O其代谢产物的模式如下图:具体代谢产物的数量关系如下图:即1/3被氧化分解,80%×2/3=53%左右通过内源呼吸降解,14%左右变成了残物。从上述结果可以看出,污染物的降解主要是通过静止期、衰亡期微生物的内源呼吸进行,并非直接的生物氧化(仅33%)。活性污泥法基本工艺流程图生化进水生化进水初沉池曝气池二沉池生化出水剩余活性污泥回流污泥污泥处理工序 活性污泥工艺的基本流程图活性污泥工艺的基本流程图氧化沟工艺流程图(2)掌握生物膜法:基本概念与流程生物膜法污水的生物膜处理法是与活性污泥并列的一种好氧处理技术。它是使细菌、菌类微生物和原生动物、后生动物一类的微型动物在滤料或某些载体上生长繁育,形成膜状生物污泥—生物膜。通过与污水的接触,生物膜上的微生物摄取污水中的有机污染物为营养,从而使污水得到净化。其代表性处理工艺有:生物滤池、生物转盘和生物接触氧化法。1、生物滤池:生物滤池是以土壤自净原理为依据,在污水灌溉的实践基础上,经间歇沙滤池和接触滤池发展起来的人工生物处理法。2、生物转盘:生物转盘是挂有生物膜的转盘在槽内以较低的线速度转动,并交替的和空气与污水相接触。当转盘浸没于污水中时,污水中的有机物被转盘上的生物膜所吸附,而当转盘离开污水时,盘片表面上形成一层薄薄的水层。水层从空气中吸收氧,而被吸附的有机污染物则为生物膜上的微生物所分解。这样,转盘每转一周,即进行一次吸附—吸氧—氧化分解过程,转盘不断转动,使污染物不断地分解氧化,从而达到净化污水的目的。3、生物接触氧化法:生物接触氧化,就是在池内设置填料,已经充氧的污水全部浸没填料,并经一定的速度流经填料。填料上长满生物膜,采用与曝气池相同的曝气方式,提供微生物所需的氧量,在生物膜上微生物的作用下,污水得到净化。它是一种介于活性污泥与生物滤池两者之间的生物处理法,也可以说是具有活性污泥法特点的生物膜法,它兼具两者优点,深受人们重视。接触氧化法工艺特征是:水力条件好,再有充沛的氧量和有机物,它非常适于微生物栖息增殖,生物膜上的生物相丰富,除细菌外,球衣菌类的丝状菌也得以大量生长,而且生物膜上还能够增殖多种种属的原生动物和后生动物,能够形成稳定的生态系;填料表面全为生物膜所布满,形成了生物膜的主体结构,有利于维护生物膜的净化功能;能够提高充氧能力和氧的利用率,保持高浓度的生物量。生物膜的立体结构形成了一个密集的生物网,污水通过其中,能够有效地提高净化效果;接触氧化在运行上的主要优点:抗冲击负荷的能力强;污泥产量少,不会产接触氧化法具有多种净化功能,如脱氮除磷,可用于三级处理。接触氧化法设计参数生物接触氧化池的个数或分格数应不少于2个,并按同时工作设计,该工艺不能处理还有聚合物或者粘度较大的污水。填料的体积按填料容积负荷和平均日污水量计算。填料的容积负荷一般应通过试验确定。当无试验资料时,对于生活污水或以生活污水为主的城市污水,容积负荷一般采用1000~1500gBOD5/(m3•d);污水在氧化池内的有效接触时间一般为1.5~3.0h。考虑到充氧设备的供气压力或提升高度。一般总池高在3.5~6.0m左右。填料层总高度一般为3m。当采用蜂窝型填料时,一般应分层装填,每层高为1m,蜂窝孔径应不小于25ram。蜂窝状填料孔径须根据废水水质(BOD5即五日生化需氧量、悬浮物等的浓度)、BOD负荷、充氧条件等因素进行选择。在一般情况下,BOD5浓度为100~300毫克/升,孔径可选用32毫米;BOD5为50~100毫克/升,可选用15~20毫米;如在50毫克/升以下,可选用10~15毫米孔径的填料。对低BOD浓度(50~300毫克/升)废水每日每立方米的填料采用2~5千克(BOD5),废水停留时间为0.5~1.5小时,氧化池内耗氧量约1~3毫克/升。由于氧化池内生物量较大,处理负荷高,可控制溶解氧量较高,一般要求氧化池出水中剩余溶解氧为2~3毫克/升。(3)掌握厌氧生物处理:厌氧生物处理原理厌氧生物处理的基本原理三阶段论——1979年由Bryant提出水解阶段:碳水化合物(脂肪、蛋白质)在水解发酵菌作用下转化为糖类、挥发性脂肪酸、(较高级有机酸)氨基酸、水和二氧化碳;酸化阶段(产酸产乙酸阶段):挥发性脂肪酸在产氢产乙酸菌作用下转化成H2、CO2、乙酸
CH3CH2COOH→CO2↑+CH3COOH+H2↑产甲烷阶段:最后两组生理不同的产甲烷菌,有共同的产物
4H2+CO2→CH4↑+2H2O——(28%)CO2被还原的反应
2CH3COOH→2CH4↑+2CO2↑——(72%)乙酸脱羧的反应,CH3COOH脱羧。三段论原理图知识点:此过程由两组生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的28%后者约占72%。上述三个阶段的反应速度依废水性质而异,在含纤维素、半纤维素、果胶和脂类等污染物为主的废水中,水解易成为速度限制步骤;简单的糖类、淀粉、氨基酸和一般的蛋白质均能被微生物迅速分解,对含这类有机物为主的废水,产甲烷易成为限速阶段。四类群论Zeikus等因发现同型产乙酸菌将H2/CO2转化为乙酸提出了四菌群理论。水解阶段
在细菌胞外酶的作用下大分子的有机物水解为小分子的有机物发酵阶段
梭状芽孢杆菌、拟杆菌等酸化细菌吸收并转化为更为简单的化合物分泌到细胞外,产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨等产乙酸阶段
上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质,这一阶段的主导细菌是乙酸菌。产甲烷阶段
乙酸、氢气、碳酸、甲酸和甲醇等被甲烷菌利用被转化为甲烷和以及甲烷菌细胞物质。经过这些阶段大分子的有机物就被转化为甲烷、二氧化碳、氢气、硫化氢等小分子物质和少量的厌氧污泥。厌氧生物处理过程中微生物优势种群的演替及相互关系厌氧污泥菌胶团(颗粒污泥)由外到内依次为:水解细菌、发酵细菌、氢细菌和乙酸菌、甲烷菌、硫酸盐还原菌、厌氧原生动物。相互为共生关系,其中:产甲烷丝菌是厌氧活性污泥的中心骨架产酸细菌为产甲烷细菌提供生长繁殖的底物、创造了适宜的氧化还原电位、清除了有毒物质产甲烷细菌为产酸细菌的生化反应解除了反馈抑制产酸细菌和产甲烷细菌共同维持环境中的适宜pH值厌氧生化法的特点1厌氧生化法的优点1)应用范围广因供氧限制,好氧法一般适用于中、低浓度有机废水的处理,而厌氧法适用于中、高浓度有机废水。有些有机物对好氧生物处理法来说是难降解的,但对厌氧生物处理是可降解的,如固体有机物、着色剂蒽醌和某些偶氮染料等。
2)产生的沼气(甲烷、氢气)可用于发电或作为能源沼气中的主要成分是甲烷,含量50~75%之间,是一种很好的燃料。以日排COD10t的工厂为例,若COD去除率为80%,甲烷产量为理论的80%时,则可日产甲烷2240m3,其热值相当于3.85t原煤,可发电5400度电。3)对营养物的需求量少好氧方法BOD:N:P=100:5:1,而厌氧方法为(350~500):5:1,相比而言对N、P的需求要小的多,因此厌氧处理时可以不添加或少添加营养盐。
4)产生的污泥量少,运行费用低繁殖慢;不需要曝气,只需要简单搅拌即可。
5)有杀菌作用厌氧处理过程有一定的杀菌作用,可以杀死废水和污泥中的寄生虫卵、病毒等。2厌氧生化法的缺点1)出水的有机物浓度高于好氧处理;
发酵分解有机物不完全;
2)对温度变化较为敏感
工业中需要设置进水的控温装置,37℃。
3)厌氧微生物对有毒物质较为敏感
但经过毒物驯化处理的厌氧菌对毒物的耐受力常常会极大地提高。4)初次启动过程缓慢,处理时间长
好氧处理体系的活性污泥或生物膜通常只需要7天就可以培育成功,而厌氧处理体系的活性污泥或生物膜一般需要8~12周才可以培育成功
5)处理过程中产生臭气和有色物质
臭气主要是硫酸盐还原菌(SRB)形成的具有臭味的硫化氢气体以及硫醇、氨气、有机酸等的臭气。同时硫化氢还会与水中的铁离子等金属离子反应形成黑色的硫化物沉淀,使处理后的废水颜色较深,需要添加后处理设施,进一步脱色脱臭。厌氧法的影响因素①温度条件②pH值③氧化还原电位④有机负荷⑤厌氧活性污泥⑥搅拌和混合⑦废水的营养比⑧有毒物质1)温度条件影响甲烷菌对温度的适应性很差,根据其生存的适宜温度范围,甲烷菌可分为两类,即中温甲烷菌(适宜温度33-35℃)和高温甲烷菌(适宜温度50-53℃)。当温度超出适宜温度范围时,厌氧消化反应速率则急剧下降。厌氧消化的允许温度波动范围为±1.5-2.0℃。当波动范围为±3℃时,就会严重抑制消化速率。当波动范围超过±5℃时,就会使有机酸大量积累而破坏厌氧消化过程的正常运行。2)pH值对厌氧消化过程的影响产酸细菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围较广,在4.5-8.0之间。
产甲烷菌要求环境介质pH值在中性附近,最适宜pH值为7.0-7.2,pH6.6-7.4较为适宜。
在厌氧法处理废水的应用中,由于产酸和产甲烷大多在同一构筑物内进行,故为了维持平衡,避免过多的酸积累,常保持反应器内的pH值在6.5-7.5(最好在6.8-7.2)的范围内。3)氧化还原电位(ORP)厌氧环境主要以体系中的氧化还原电位反映。一般自来水中是100mV左右,而污水中是-100mV。高温厌氧消化系统:适宜氧化还原电位为-500~-600mV;中温厌氧消化系统及浮动温度厌氧消化系统:氧化还原电位应低于-300~-380mV。产酸细菌:对氧化还原电位的要求不甚严格,甚至可在+100~-100mV的兼性条件下生长繁殖;甲烷细菌:最适宜的氧化还原电位为-350mV或更低。
就大多数生活污水的污泥及性质相近的高浓度有机废水而言,只要严密隔断于空气的接触,即可保证必要的值。4)有机负荷在厌氧法中,有机负荷通常指容积有机负荷,简称容积负荷,即消化器单位有效容积每天接受的有机物量(kgCOD/m3·d)。对悬浮生长工艺,也有用污泥负荷表达的,即kgCOD/(kg污泥·d)。在通常的情况下:厌氧消化工艺处理高浓度工业废水的有机负荷:中温为2-3kgCOD/(m3·d),在高温下为4-6kgCOD/(m3·d)。上流式厌氧污泥床反应器UASB、厌氧滤池AF、厌氧流化床UBF等新型厌氧工艺的有机负荷:在中温下为5-15kgCOD/(m3·d),可高达30kgCOD/(m3·d)。在污泥消化中,有机负荷习惯上以投配率或进料率表达,即每天所投加的湿污泥体积占消化器有效容积的百分数。5)污泥浓度各种反应器要求的污泥浓度不尽相同,一般介于10~30gVSS/L之间。为了保持反应器的生物量不致因流失而减少,可采用多种措施:如安装三相分离器、设置挂膜介质、降低水流速度和回流污泥量等。6)搅拌和混合通过搅拌:消除池内梯度,增加食料与微生物之间的接触避免产生分层,促进沼气分离。进料迅速与池中原有料液相混匀。搅拌程度与强度要适当,搅拌的方法:机械搅拌器搅拌法消化液循环搅拌法沼气循环搅拌法等沼气循环搅拌,还有利于使沼气中的CO2作为产甲烷的底物被细菌利用,提高甲烷的产量。7)废水的营养比厌氧法中碳:氮:磷控制为200-300:5:1为宜。在碳、氮、磷比例中,碳氮比例对厌氧消化的影响更为重要。研究表明,合适的C/N为10-18:1。8)有毒物质有毒物质的最高容许浓度与处理系统的运行方式、污泥驯化程度、废水特性、操作控制条件等因素有关。9)硫酸盐一般在厌氧生化处理系统中,由SO42-还原所产生的H2S可能引起以下问题:废水中的有机物一部分要消耗于SO42-的还原,因而不能转化为CH4,减少了厌氧反应器的甲烷产量,从而降低了其与好氧系统相比的优势。游离的H2S对厌氧系统中的产甲烷菌、产酸菌甚至硫酸盐还原菌均有抑制作用,如果游离H2S浓度过高,势必影响到厌氧反应的负荷和处理效率。存在于厌氧出水中的H2S,体现COD,使得厌氧反应器COD去除率降低。由反应器和出水释放出的H2S气体,引起恶臭,污染环境,并且可能造成中毒事件。转移到沼气部分的H2S,会引起沼气利用设备的腐蚀,为避免这一问题需要增加额外的投资或者使运行管理费用显著增加。(5)掌握污水处理的脱氮除磷工艺5.1生物脱氮原理5.1.1氮在水中的存在形态与分类5.1.2微生物的脱氮原理过程1)先氨化/硝化,再反硝化:这是一个先好氧、后缺氧的组合过程。2)氨化与硝化反应过程※氨化反应:※硝化反应:3)硝化反应的条件(1)好氧状态:DO≥2mg/L;1gNH3-N完全硝化需氧4.57g,即硝化需氧量。
(2)消耗废水中的碱度:1gNH3-N完全硝化需碱度7.14g(以CaCO3计),废水中应有足够碱度,以维持pH值不变。
(3)污泥龄θC≥15d。
(4)BOD5≤20mg/L。4)反硝化反应反硝化包括异化反消化和同化反消化,以异化反消化为主,反硝化菌在DO浓度很低的环境中,利用硝酸盐中的氧作为电子受体,有机物作为碳源及电子供体而得到降解。当利用的碳源为甲醇时:NO3-+1.08CH3OH+0.24H2CO3→0.056C5H7CO2+0.47N2↑+1.68H2O+HCO3-NO2-+0.67CH3OH+0.53H2CO3→0.04C5H7CO2+0.48N2↑+1.23H2O+HCO3-反硝化反应可使有机物得到分解氧化,实际是利用了硝酸盐中的氧,每还原1gNO3--N所利用的氧量约2.6g。5)反硝化反应条件DO<0.5mg/L,一般为0.2~0.3mg/L(处于缺氧状态),如果DO较高,反硝化菌利用氧进行呼吸,氧成为电子受体,阻碍NO3-—O成为电子受体而使N难还原成N2↑。但是反硝化菌体内的某些酶系统组分只有在有氧条件下,才能合成。反硝硝化菌以在缺氧-好氧交替的环境中生活为宜。BOD5/TN≥5~6,否则需另投加碳源,现多采用CH3OH,其分解产物为CO2+H2O,不留任何难降解的中间产物,且反硝化速率高。目前反硝化投加有机碳源一般利用原污水中的有机物。还原1g硝态氮能产生3.57g碱度,而在硝化反应中,1gNH3—N氧化为NO3-—N要消耗7.14g碱度,在缺氧-好氧中,反硝化产生的碱度可补偿硝化消耗碱度的一半左右。5.1.3影响硝化反硝化反应过程的主要因素1)温度硝化反应的适宜温度范围是30~35℃,温度不但影响硝化茵的比增长速率,而且影响硝化菌的活性,在5~35℃的范围内,硝化反应速率随温度的升高而加快,仅超过30℃时增加幅度减少,当温度低于5℃时,硝化细菌的生命活动几乎停止。对于同时去除有机物和进行硝化反应的系统,温度低于15℃即发现硝化速率迅速降低,低温对硝酸菌的抑制作用更为强烈,因此在低温12~14℃时常出现亚硝酸盐的积累。在30~35℃较高温度下,亚硝酸菌的最小倍增时间要小于硝酸菌,因此,通过控制温度和污泥龄,也可控制反应器中亚硝酸菌的绝对优势。反硝化反应的最佳温度范围为35~45℃,温度对硝化菌的影响比反硝化菌大。2)溶解氧
硝化反应必须在好氧条件下进行,一般应维持混合液的溶解氧浓度为2~3mg/L,溶解氧浓度0.5~0.7mg/L,是硝化菌可以忍受的极限。硝化可在高溶解氧状态下进行,高达60mg/L的溶解氧浓度也不会抑制硝化的进行,为了维持较高的硝化速率,污泥龄降低时要相应地提高溶解氧浓度。溶解氧对反硝化反应有很大影响,主要由于氧会同硝酸盐竞争电子供体。同时分子态氧也会抑制硝酸盐还原酶的合成及其活性,
3)pH值
硝化反应的最佳pH值范围为7.5~8.5,硝化菌对pH值变化十分敏感,当pH值低于7时,硝化速率明显降低.低于6和高于9.6时,硝化反应将停止进行。反硝化过程的最佳pH值范围为6.5~7.5,不适宜的PH值会影响反硝化菌的生长速率和反硝化酶的活性。当pH值低于6.0或高于8.0时,反硝化反应将受到强烈抑制。
4)C/N比
C/N比值是影响硝化速率和过程的重要因素。硝化菌是自养菌,硝化菌产率或比增长速率比活性污泥异养菌低得多,若废水中BOD5值太高,将有助于异养菌迅速增殖,从而使微生物中的硝化菌的比例下降,一般认为,只有BOD5低于20mg/L时,硝化反应才能完成。反硝化过程需要充足的碳源,理论上lgNO2还原为N2需要碳源有机物2.86g。一般认为,当废水的BOD5/TKN值大于4~6时,可认为碳源充足,不需另外投加碳源,反之则要投加甲醇或其他易降解的有机物作碳源。
5)污泥龄
为使硝化菌能在连续流的反应系统中存活并维持一定数量,微生物在反应器的停留时间即污泥龄应大于硝化菌的最小世代期。一般应取系统的污泥龄为硝化最小世代期的两倍以上。较长的污泥龄可增强硝化反应的能力,并可减轻有毒物质的抑制作用。6)抑制物质
对硝化反应有抑制作用的物质有:过高浓度氨氮、重金属、有毒物质以及有机物。一般来说,同样毒物对亚硝酸菌的影响比对硝酸菌大。反硝化菌对有毒物质的敏感性比硝化菌低很多,与一般好氧异养菌相同。在应用一般好氧异养菌文献数据时,应该考虑驯化的影响。
生物脱氮工艺包括含碳有机物的氧化、氨氮的硝化、硝态氮的反硝化等生物过程,即碳化-硝化-反硝化过程。从完成这些过程的反应器来分,脱氮工艺可分为活性污泥脱氮系统和生物膜脱氮系统,其分别采用活性污泥法反应器与生物膜反应器作为好氧/缺氧反应器,实现硝化/反硝化以达到脱氮的目的。从完成这些过程的时段和空间不同,活性计泥脱氮系统的碳化、硝化、反硝化可在多池中进行,也可在单池中进行。生物脱氮反应过程各项生化反应特征5.2生物脱氮工艺——A/O工艺5.2.1基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为HO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。注意:A/O、A2/O中的英文符号A代表缺氧和厌氧两个意义,区别为:缺氧——缺氧就是没有或是很少有单质氧(O2,DO<0~0.5),只有化合态的氧(NOx—O、SOx—O)。厌氧——既没有单质氧(氧气O2,DO≈0),也没有化合态的氧(NOx—O+SOx—O≈0)。又名“绝氧”。5.2.2主要工艺特点缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的减度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。该工艺还可以将缺氧池与好氧池合建,中间隔以档板,降低工程造价,所以这种形式有利于对现有推流式曝气池的改造。5.2.3A/O工艺的影响因素A/O工艺运行过程控制不要产生污泥膨胀和流失,其对有机物的降解率是较高的(90~95%),缺点是脱氮除磷效果较差。如果原污水含磷浓度<3mg/L,则选用A/O工艺是合适的,为了提高脱氮效果,A/O工艺主要控制几个因素:(1)MLSS一般应在3000mg/L以上,低于此值A/O系统脱氮效果明显降低。(2)TKN/MLSS负荷率(TKN─凯式氮,指水中氨氮与有机氮之和):在硝化反应中该负荷率应在0.05gTKN/(gMLSS·d)之下。(3)BOD5/MLSS负荷率:在硝化反应中,影响硝化的主要因素是硝化菌的存在和活性,因为自氧型硝化菌最小比增长速度为0.21/d;而异养型好氧菌的最小比增殖速度为1.2/d。前者比后者的比增殖速度小得多。要使硝化菌存活并占优势,要求污泥龄理论值大于4.76d;但对于异养型好氧菌,则污泥龄只需0.8d。在传统活性污泥法中,由于污泥龄只有2~4d,所以硝化菌不能存活并占有优势,不能完成硝化任务。要使硝化菌良好繁殖就要增大MLSS浓度或增大曝气池容积,以降低有机负荷,从而增大污泥龄。其污泥负荷率(BOD5/MLSS)应小于0.18KgBOD5/KgMLSS·d(4)污泥龄ts:为了使硝化池内保持足够数量的硝化菌以保证硝化的顺利进行,确定的污泥龄应为硝化菌世代时间的3倍,硝化菌的平均世代时间约3.3d(20℃)硝化菌世代时间与污水温度的关系若冬季水温为10℃,硝化菌世代时间为10d,则设计污泥龄应为30d(5)污水进水总氮浓度:TN应小于30mg/L,NH3-N浓度过高会抑制硝化菌的生长,使脱氮率下降至50%以下。(6)混合液回流比:R的大小直接影响反硝化脱氮效果,R增大,脱氮率提高,但R增大增加电能消耗增加运行费。A/O工艺脱氮率与混合液回流比关系(7)缺氧池BOD5/NOx—N比值:>4以保证足够的碳/氮比,否则反硝化速率迅速下降;但当进入硝化池BOD5值又应控制在80mg/L以下,当BOD5浓度过高,异养菌迅速繁殖,抑制自养菌生长使硝化反应停滞。(8)硝化池溶解氧:DO>2mg/L,一般充足供氧DO应保持2~4mg/L,满足硝化需氧量要求,按计算氧化1gNH4+需4.57g氧。(9)水力停留时间:硝化反应水力停留时间>6h;而反硝化水力停留时间2h,两者之比为3:1,否则脱氮效率迅速下降。(10)pH:硝化反应过程生成HNO3使混合液pH下降,而硝化菌对pH很敏感,硝化最佳pH=8.0~8.4,为了保持适宜的pH就应采取相应措施,计算可知,使1g氨氮(NH3-N)完全硝化,约需碱度7.1g(以CaCO3计);反硝化过程产生的碱度(3.75g碱度/gNOx--N)可补偿硝化反应消耗碱度的一半左右。反硝化反应的最适宜pH值为6.5~7.5,大于8、小于7均不利。(11)温度:硝化反应20~30℃,低于5℃硝化反应几乎停止;反硝化反应20~40℃,低于15℃反硝化速率迅速下降。因此,在冬季应提高反硝化的污泥龄ts,降低负荷率,提高水力停留时间等措施保持反硝化速率。5.2同步脱氮除磷工艺——A²/O法脱氮除磷的工艺5.2.1A²/O工艺简介A2/O是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称,A2/O工艺是在一个处理系统中同时具有厌氧区、缺氧区、好氧区,能够同时做到脱氮、除磷和有机物的降解,其基本工艺流程如下图所示:由图可知,污水首先进入厌氧区,兼性厌氧发酵细菌将污水中可生物降解的有机物转化为VFA(挥发性脂肪酸类——较高级有机酸)这类低分子发酵中间产物。而聚磷菌可将其体内存储的聚磷酸盐分解,所释放的能量可供好氧的聚磷菌在厌氧环境下维持生存,另一部分能量还可供聚磷菌主动吸收环境中的VFA类分子有机物,并以PHB(聚β羟丁酸)的形式在其体内储存起来。随后污水进入缺氧区,反硝化菌就利用好氧区回流混合液带来的硝酸盐,以及污水中可生物降解有机物作碳源进行反硝化,达到同时降低BOD5与脱氮的目的。接着污水进入曝气的好氧区,聚磷菌在吸收、利用污水中残剩的可生物降解有机物的同时,主要是通过分解体内储存的PHB释放能量来维持其生长繁殖。同时过量的摄取周围环境中溶解磷,并以聚磷的形式在体内储积起来,使出水中溶解磷浓度达到最低。而有机物经厌氧区、缺氧区分别被聚磷菌和反硝化细菌利用后,到达好氧区时浓度已相当低,这有利于自养型硝化菌的生长繁殖,并通过消化作用将氨氮转化为硝酸盐。非除磷的好养性异养菌虽然也能存在,但他在厌氧区中受到严重的压抑,在好氧区又得不到充足的营养,因此在与其他生理类群的微生物竞争中处于相对劣势。排放的剩余污泥中,由于含有大量能超量储积聚磷的聚磷菌,污泥含磷量可以达到6%(干重)以上。从以上分析可以看出A²/O工艺具有同步脱氮除磷的功能。5.2.2A²/O工艺的特点(1)A²/O工艺中三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮、除磷的功能;(2)在同时脱氮、除磷、去除有机物的工艺中,该工艺流程简单,总水力停留时间也较小;(3)在厌氧-缺氧-好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀;(4)污泥中磷的含量较高,一般为2.5%以上;(5)厌氧-缺氧池只需缓慢搅拌,使之混合,而以不增加溶解氧为度;(6)沉淀池要防止发生厌氧、缺氧状态,以避免聚磷菌释放磷而降低出水水质和反硝化产生氮气而干扰沉淀;(7)脱氮效果受混合液回流比大小的影响,除磷效果受回流污泥中挟带DO和硝酸盐氮的影响,因而脱氮除磷效率受到一定限制。5.2.3A²/O工艺的优点A²/O工艺的优点是厌氧、缺氧、好氧交替运行,可以达到同时去除有机物、脱氮、除磷的目的,而且这种运行状况丝状菌不宜生长繁殖,基本不存在污泥膨胀问题。A²/O工艺流程简单,总水力停留时间少于其他同类工艺,并且不需外加碳源,缺氧、缺氧段只进行缓速搅拌,运行费用低。5.2.4A²/O工艺的缺点A²/O工艺的缺点是除磷效果因受到污泥龄、回流污泥中挟带的溶解氧和NO3-N的限制,不可能十分理想;同时,由于脱氮效果取决于混合液回流比,而A²/O工艺的混合液回流比不宜太高(≤200%),脱氮效果不能满足较高要求。5.2.5A²/O工艺的影响因素1)溶解性有机底物浓度的影响由于厌氧段中聚磷菌只能利用可快速生物降解的有机物,若此类物质浓度较低,聚磷菌则无法正常进行磷的释放和吸收。研究表明,厌氧段进水S-TP和SBOD5的比值应小于0.06。在缺氧段,若有机底物浓度较低,则反硝化脱氮速率将因碳源不足而受抑制,一般来讲,废(污)水中COD/TKN值大于8时,氮的总去除率可达80%,工程设计中也可按照BOD5/NOx¯-N>4进行控制。2)污泥龄θc的影响A²/O工艺的污泥龄受两方面影响,其一是硝化菌世代时间的影响,一般为25d左右;其二是除磷主要通过剩余污泥排出系统,要求A²/O工艺中污泥龄不宜过长,应为5-8d。权衡两方面,一般A²/O工艺污泥龄为15-20d。3)溶解氧DO的影响A²/O工艺的溶解氧应满足三方面要求,即好氧段氨氮完全氧化为硝态氮所需、满足进水中有机底物的氧化所需及好氧段聚磷菌所需。为防止DO过高而随污泥回流和混合液回流带至厌氧段和缺氧段,造成厌氧不完全而影响聚磷菌的释磷和缺氧段反硝化。一般好氧段DO在2.0㎎/L,厌氧段DO浓度小于0.2㎎/L,缺氧段DO浓度小于0.5㎎/L。4)硝化区和反硝化区容积比的影响硝化区和反硝化区容积比受尽水水质、水温等变化而变化。一般硝化区和反硝化区容积比为(8~7)∶(2~3),但在水质较差或脱氮要求较高时,该容积比最小为1∶1。5)有机底物污泥负荷Ns的影响好氧池Ns应不超过0.18㎏BOD5/(㎏MLSS·d),否则异养菌数数量超过硝化菌而抑制硝化过程;而厌氧池的Ns应大于0.10㎏BOD5/(㎏MLSS·d),否则聚磷菌底物不足,除磷效果下降。6)氮的污泥负荷影响氮的污泥负荷过高会对硝化菌产生抑制,一般小于0.05㎏TKN/(㎏MLSS·d),相应反应池内污泥浓度MLSS取3000-4000㎎/L。7)污泥回流比R和混合液回流比Rn的影响污泥回流比R一般为25%-100%,如果R太高,污泥将DO和硝态氮带入厌氧池太多,影响其厌氧状态且反硝化产生,会抑制厌氧释磷过程;如果R太低,则维持不了正常的反应器内污泥浓度,影响生化反应速率和处理效率。虽然提高混合液回流比Rn可以提高反硝化效果,但Rn过大,则大量曝气池的DO将被带入反硝化区,反而破坏了反硝化条件,且动力费用大。一般混合液回流比Rn根据脱氮要求在100%-600%左右。8)水温的影响硝化菌生长的最适宜温度为30-35℃,为避免硝化速率和有机底物好氧降解速率明显下降,水温不宜低于10℃;反硝化脱氮最适温度为20-38℃,为避免硝酸盐还原菌的生长速率下降,水温不宜低于15℃。温度对聚磷菌影响不大,因为聚磷菌有高温菌、中温菌和低温菌三种,其中低温菌又有专性和兼性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冲压弯曲模具课程设计设计u形
- 辣椒真辣课程设计
- 水冷机组课程设计
- 片剂课程设计任务书
- 2024至2030年中国紧急修补包数据监测研究报告
- 2024年气割工具项目可行性研究报告
- 2024至2030年中国塑钢开口链行业投资前景及策略咨询研究报告
- 课程设计简单ftp功能模拟
- 广西大学钢混课程设计
- 中国高压热缩管行业市场现状分析及竞争格局与投资发展研究报告(2024-2030版)
- 《红星照耀中国》阅读推进课教学设计-2023-2024学年统编版语文八年级上册
- TSG+11-2020锅炉安全技术规程
- NB-T31030-2012陆地和海上风电场工程地质勘察规范
- 国开(黑龙江)2024年《网络行为分析》终结性考核答案
- 江苏省常州市天宁区2023-2024学年五年级下学期一二单元语文试卷
- 学生自主管理委员会常规检查登记表(定)
- DL-T5142-2012火力发电厂除灰设计技术规程
- 江苏省南京市鼓楼区+2023-2024学年九年级上学期期中物理试题(有答案)
- 老年友善医院创建汇报
- 科学素养培育及提升-知到答案、智慧树答案
- 消防设施操作员报名工作证明(操作员)
评论
0/150
提交评论