版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年七下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列说法:①两点之间,线段最短;②正数和负数统称为有理数;③多项式3x2-5x2y2-6y4-2是四次四项式;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成7组;⑤一个锐角的补角与这个角的余角的差是直角,其中正确的有()A.2个 B.3个 C.4个 D.5个2.如图,正方形卡片类,类和长方形卡片类若干张,若要用、、三类卡片拼一个长为,宽为的长方形,则需要类卡片()A.2张 B.3张 C.4张 D.5张3.某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A. B. C. D.4.9的平方根是()A.3 B.﹣3 C.±3 D.815.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()A. B. C. D.6.为了调查班级中对新班主任老师的印象,下列更具有代表性的样本是()A.调查前十名的学生 B.调查后十名的学生C.调查单号学生 D.调查全体男同学7.不等式2x+3<5的解集在数轴上表示为()A. B.C. D.8.不等式1-2x<5-x的负整数解有(
)A.1个 B.2个 C.3个 D.4个9.将图中五边形纸片的点以为折线向下翻折,点恰好落在上,如图所示:再分别以图中的为折线,将两点向上翻折,使得、、、、五点均在同一平面上,如图所示.若图中,则图中的度数为()A. B. C. D.10.下列汽车标志中,可以看作中心对称图形的是().A. B. C. D.二、填空题(本大题共有6小题,每小题3分,共18分)11.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.12.命题“对顶角相等”的条件是.13.若为最大的负整数,则a的值应为_______14.观察下列各式:(x+5)(x+6)=x2+11x+30;(x﹣5)(x﹣6)=x2﹣11x+30;(x﹣5)(x+6)=x2+x﹣30;(x+5)(x﹣6)=x2﹣x﹣30;其中的规律用公式表示为_____.15.已知一组数据有50个,其中最大值是142,最小值是1.若取组距为5,则可分为_____组.16.分解因式:ab2﹣2a2b+a3=_____.三、解下列各题(本大题共8小题,共72分)17.(8分)古运河是扬州的母亲河.为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两工程队先后接力完成.A工程队每天整治12米,B工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:;乙:.根据甲、乙两名问学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示______,y表示_______;乙:x表示_____,y表示_______.(2)求A、B两工程队分别整治河道多少米.(写出完整的解答过程)18.(8分)观察下列一组等式,然后解答后面的问题,,,(1)观察以上规律,请写出第个等式:为正整数).(2)利用上面的规律,计算:(3)请利用上面的规律,比较与的大小.19.(8分)如图,两块形状、大小完全相同的三角板按照如图所示的样子放置,找一找图中是否有互相平行的线段,完成下面证明:证明:∵∠______=∠______,∴______∥______(______)(填推理的依据)20.(8分)先化简,再求值:,其中x满足.21.(8分)若,求的值.22.(10分)某中学准备购进A、B两种教学用具共40件,A种每件价格比B种每件价格贵8元,同时购进2件A种教学用具和3件B种教学用具恰好用去116元.(1)求A、B两种教学用具的单价各是多少元?(2)学校准备用不少于880元且不多于900元的金额购买A、B两种教学用具,问A种教学用具最多能购买多少件?23.(10分)阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB∥CD,E为形内一点,连结BE、DE得到∠BED,求证:∠E=∠B+∠D悦悦是这样做的:过点E作EF∥AB.则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.(2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.(3)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.24.(12分)如图,AB、CD相交于点O,OE是∠AOD的平分线,∠AOC=30°,求∠BOE的度数。
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据线段的基本事实、有理数的分类、多项式概念、频数分布直方图中组数的确定及补余角的性质逐一判断可得.【详解】①两点之间,线段最短,此结论正确;②正有理数、负有理数和0统称为有理数,此结论错误;③多项式3x2-5x2y2-6y4-2是四次四项式,此结论正确;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成8组,此结论错误;⑤一个锐角的补角与这个角的余角的差是直角,此结论正确;故选B.【点睛】本题主要考查频数(率)分布表,解题的关键是掌握线段的基本事实、有理数的分类、多项式概念、频数分布直方图中组数的确定及补余角的性质.2、C【解析】
根据长方形的面积=长×宽,求出长为a+3b,宽为a+b的长方形的面积是多少,判断出需要C类卡片多少张即可.【详解】长为a+3b,宽为a+b的长方形的面积为:(a+3b)(a+b)=a2+4ab+3b2,∵A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,∴需要A类卡片1张,B类卡片3张,C类卡片4张.故选:C.【点睛】此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.3、D【解析】
设六班得x分,七班得y分,根据:六班与七班的得分比为4:3,六班比七班的得分2倍少40分,可列方程组.【详解】设六班得x分,七班得y分,则根据题意可列方程组:,故选D.【点睛】本题主要考查根据实际问题列方程组的能力,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.4、C【解析】
如果一个数的平方等于则这个数是的平方根或二次方根,根据平方根的定义回答即可.【详解】的平方根是故选:C.【点睛】根据平方根的定义回答即可.一个正数有2个平方根,它们互为相反数.5、A【解析】
根据三角形按角分类的方法一一判断即可.【详解】观察图象可知:选项B,D的三角形是钝角三角形,选项C中的三角形是锐角三角形,选项A中的三角形无法判定三角形的类型.故选A.【点睛】本题考查了三角形的分类,解题的关键是熟练掌握基本知识,属于中考常考题型.6、C【解析】
根据随机抽样的意义分析即可,随机抽样应使总体中每个个体都有相同的被抽取机会.【详解】A、B、D都不具有随机性,故不具有代表性;C具有随机性,每个同学都可能被抽调,故C具有代表性.故选C.【点睛】本题考查了随机抽样,为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽样的方法叫做随机抽样.样本的选取应具有随机性、代表性、容量应足够大.7、A【解析】
先解出不等式,然后根据解集的范围在数轴上画出来,可以直接选出答案.【详解】移项得,2x<5﹣3,合并同类项得,2x<2,系数化为1得.x<1.在数轴上表示为:.故选:A.【点睛】本题考查了学生不等式解集在数轴上的表示,掌握解集在数轴上的区间的表示是解决此题的关键.8、B【解析】【分析】按去分母、去括号、移项、合并同类项、系数化为1的步骤求出不等式的解集后按要求求出整数解即可.【详解】2(1-2x)<10-x,2-4x<10-x,-4x+x<10-2,-3x<8,x>-,所以不等式的负整数解有-1、-2,共2个,故选B.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤及注意事项是关键.9、D【解析】
根据平角的定义和定理和折叠的性质来解答即可.【详解】解:由图2知,∠BAC+∠EAD=180°−122°=58°,所以图3中∠CAD=122°−58°=64°.故选:D.【点睛】本题考查了折叠的性质,结合图形解答,需要学生具备一定的读图能力和空间想象能力.10、D【解析】
根据中心对称图形的性质得出图形旋转180°,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可.【详解】解:A.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,与原图形能够完全重合是中心对称图形;故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【解析】
设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,
由题意得,3x+(10-x)≥24,
解得:x≥1,
即甲队至少胜了1场.
故答案是:1.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.12、两个角是对顶角【解析】
根据命题由题设与结论组成可得到对顶角相等”的“条件”是若两个角是对顶角,结论是这两个角相等.【详解】“对顶角相等”的“条件”是两个角是对顶角.故答案为两个角是对顶角.【点睛】本题考查了写命题的题设和结论,熟练掌握条件和结论是解题的关键.13、±5【解析】
根据原式的值为最大的负整数-1得=-1;然后利用立方根的定义求出a的值即可.【详解】解:由题意可得:=-1即9-2|a|=-1解得:a=±5.【点睛】本题只要根据立方根的定义即可作答,关键是知道最大的负整数是几;14、(x+m)(x+n)=x2+(m+n)x+mn【解析】
根据规律乘积中的一次项系数是两因式中常数项的和,乘积中的常数项是常数项的积,即可得出答案,【详解】观察下列各式:(x+5)(x+6)=x2+11x+30;(x﹣5)(x﹣6)=x2﹣11x+30;(x﹣5)(x+6)=x2+x﹣30;(x+5)(x﹣6)=x2﹣x﹣30;其中的规律用公式表示为(x+m)(x+n)=x2+(m+n)x+mn,故答案为:(x+m)(x+n)=x2+(m+n)x+mn【点睛】本题考查多项式乘多项式,熟练掌握计算法则是解题关键.15、2.【解析】
可根据数据的最大最小值求得极差,再除以组距即为所求.【详解】∵极差为,∴可分组数为,故答案为:2.【点睛】本题考查数据的处理,关键是根据极差和组距求得组数,需要注意的是得到的结果不是四舍五入,而是进一.16、a(a﹣b)2【解析】原式==.即答案为:.三、解下列各题(本大题共8小题,共72分)17、(1)20,180,180,20,A工程队用的时间,B工程队用的时间,A工程队整治河道的米数,B工程队整治河道的米数;(2)A工程队整治河道60米,B工程队整治河道120米.【解析】
(1)此题蕴含两个基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,由此进行解答即可;(2)选择其中一个方程组解答解决问题.【详解】(1)甲同学:设A工程队用的时间为x天,B工程队用的时间为y天,由此列出的方程组为;乙同学:A工程队整治河道的米数为x,B工程队整治河道的米数为y,由此列出的方程组为;故答案依次为:20,180,180,20,A工程队用的时间,B工程队用的时间,A工程队整治河道的米数,B工程队整治河道的米数;(2)选甲同学所列方程组解答如下:,②﹣①×8得4x=20,解得x=5,把x=5代入①得y=15,所以方程组的解为,A工程队整治河道的米数为:12x=60,B工程队整治河道的米数为:8y=120;答:A工程队整治河道60米,B工程队整治河道120米.【点睛】此题主要考查利用基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,运用不同设法列出不同的方程组解决实际问题.18、(1);(2)9;(3)【解析】
(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第个等式为;故答案为:;(2)原式;(3),,,.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.19、A;F;AB;EF;内错角相等,两直线平行(或“ACB;FDE;BC;DE;内错角相等,两直线平行”)【解析】
直接利用平行线的判定方法分析即可得出答案.【详解】解法1:证明:∵∠A=∠F,∴AB∥EF(内错角相等,两直线平行).解法2:证明:∵∠ACB=∠FDE,∴BC∥DE(内错角相等,两直线平行).故答案为:A;F;AB;EF;内错角相等,两直线平行(或“ACB;FDE;BC;DE;内错角相等,两直线平行”).【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.20、,1.【解析】
原式括号中利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x的值,代入计算即可求出值.【详解】原式==,由2x+4=0,得到x=﹣2,则原式=1.21、-4.【解析】
原方程可变形为(x+1)2+(y-4)2=0,,解得代入得:利用完全平方公式求解22、(1)A种教学用具每件28元,B种教学用具每件20元;(2)A种教学用具最多能够购买12件.【解析】
(1)设A种教学用具每件x元,B种教学用具每件y元.根据题目中的等量关系“A种每件价格比B种每件价格贵8元,同时购进2件A种教学用具和3件B种教学用具恰好用去116元”列出方程组,解方程组即可;(2)设购买A种教学用具m件.根据“用不少于880元且不多于900元的金额购买A、B两种教学用具”列出不等式组,解不等式组即可解答.【详解】(1)设A种教学用具每件x元,B种教学用具每件y元,依题意得:x-y=82x+3y=116解得:x=28y=20答:A种教学用具每件28元,B种教学用具每件20元;(2)设购买A种教学用具m件则有:28m+20(40-m)⩽90028m+20(40-m)⩾880解得:10≤m≤252∵m取正整数∴m的最大值是12答:A种教学用具最多能够购买12件.【点睛】本题考查了二元一次方程的应用,不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.23、(2)∠EGF=90°;(3)详见解析.【解析】
(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=2∠BEG,∠EFD=2∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到2∠BEG+2∠GFD=180°,即可得到结论;
(3)如图3,过点G1作G1H∥AB由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,得到∠3=∠G2FD,由于FG2平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度租车行业信用体系建设合同2篇
- 二零二五年度餐厅装修与品牌推广合作合同3篇
- 二零二五年度电子产品组装加工合同范本3篇
- 二零二五版电商平台法律风险防范与合规管理合同3篇
- 二零二五版城市核心区二手房交易中介合同2篇
- 封窗合同范本(2篇)
- 展会参展商培训合同(2篇)
- 二零二五版高新技术产业劳动合同标准文本3篇
- 二零二五版建筑工程合同管理与索赔争议调解服务协议3篇
- 二零二五版房地产项目股权出资转让合同样本3篇
- 资本金管理制度文件模板
- 2025年生产主管年度工作计划
- 2025年急诊科护理工作计划
- 高中家长会 高二寒假线上家长会课件
- 2024-2025学年山东省聊城市高一上学期期末数学教学质量检测试题(附解析)
- 违规行为与处罚管理制度
- 个人教师述职报告锦集10篇
- 四川省等八省2025年普通高中学业水平选择性考试适应性演练历史试题(含答案)
- 《内部培训师培训》课件
- 《雷达原理》课件-3.3.3教学课件:相控阵雷达
- 西方史学史课件3教学
评论
0/150
提交评论