版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
图像模式识别应用专题:车牌识别技术图像分析处理技术的综合应用一、车牌识别技术简介车牌识别是现代交通管理的重要措施,是智能交通系统的重要环节内容: 车牌识别系统是采用数字摄像技术和计算机信息管理技术,对运行车辆实现智能管理的综合运用技术理论基础:数字图像处理和模式识别车牌识别技术具有典型性,容易推广到其它识别对象主要应用领域主要应用场合(1)公安卡口(2)高速公路收费管理(3)城市道路监控系统(电子警察)(4)海关车辆管理(5)停车场管理(6)车辆流量统计有关识别率的统计数据各环节的识别率:(1)牌照定位98%(2)单字分割97.8%(3)车牌识别95% 从上面统计情况可看出,目前单项识别率均达到95%以上,但总识别率仅能达91%以上,仍需进一步提高。系统组成车牌识别系统组成识别流程主要由三部分组成图像捕获一般采用CCD摄像头,包括整车图像或牌照(一般为彩色图像)后两步由计算机实现关键部分是第三步:字符识别(OCR)二、车牌定位与分割车牌定位:通过车牌区域的特征来判别牌照的位置,将车牌从图像中分割出来步骤:(1)彩色图像灰度化(2)图像增强(3)边缘检测(4)模板匹配(5)输出牌照子图像CCD输出CCD捕获的汽车图像灰度图像彩色图像灰度化边缘提取(方法多种)定位、分割后输出下步工作是对分割输出进行字符识别车徽边缘提取与识别
1、彩色图像灰度化CCD摄像头输出的图像一般是24位真彩色图像,需进行灰度化,使不同颜色车体统一化,同时实现快速处理两种制式都可以采用
PAL制:亮度 NTSC制:亮度3、边缘检测主要方法(1)对图像进行直分析处理(2)提取车牌区域边界(3)灰度点运算(4)模板匹配(5)算子法(6)形态学处理(7)其它边缘提取方法车牌图像特征车牌定位与分割的理论与方法是根据车牌图像的特点来确定的车牌图像主要特征有:(1)车牌区域内的边缘灰度直方图统计特征(2)车牌的几何特征(3)车牌区域的灰度分布特征(4)车牌区域的水平、垂直投影特征(5)车牌形状特征和字符排列格式特征(6)车牌的形态学特征(7)频谱特征车牌图像的组成组成:省份汉字(或其他汉字)+字母或阿拉伯数字,共7位,即X1X1•X3X4X5X6X7 例:川A•K0387尺寸:宽45mm、高90mm、间隔符宽10mm、单元间隔12mm字符笔画在竖直方向是连通的牌底与字符颜色对照大,边缘非常丰富四类:蓝底白字、黄底黑字、黑底白字、 白底黑字环境光太强车牌图像太弱文字干扰其他字符干扰车牌污染车牌被污染运动失真车牌字符因运动失真梯度法边缘提取梯度法(一阶偏微分)又称Roberts算子 一种利用局部差分法提取边缘(锐化)的方法
F(j,k)f(j,k+1)F(j+1,k)快速边缘检测在车牌系统中还常采用一种更简单的模板来提取边缘(对于有干扰的图像效果不理想)特点:运算速度快,车牌笔画轮廓突出,而车体其他部分轮廓不突出掩模匹配法锐化:罗比逊模板、普雷外特模板、柯赤模板上述三种模板均可用于边缘提取,车牌检测常用柯赤(Krisch)模板,由8个算子组成高斯-拉普拉斯算子法二阶微分算子 该算子对噪声不敏感(5×5)输出:哈夫(Hough)变换提取直线利用图像全局特性将边缘像素连接起来形成区域封闭边界的一种方法原理:将二维空间(x,y)平面中的直线用二维极坐标(ρ,θ)空间表示 将直线表示为:
即将(x,y)平面的直线变换为r-θ空间的一个点 该方法亦用于倾斜校正哈夫(Hough)变换原理模板匹配用与图像中车牌一样大小的已知模板,在经对比度增强后的图像中,从起点(0,0)开始,逐步平移一一匹配,寻找最佳区域匹配公式: 最大值为输出 已知模板并不是某个具体的车牌,而是具有车牌统计特性的通用模板,是一种模糊匹配形态学处理确定车牌位置将图像二值化,通过膨胀、腐蚀操作定位车牌定位算法之一(1)对原始图像进行基于方向区域距离测度的彩色边缘检测得到原始边缘图像(2)对原始边缘图像中的每一边缘点进行边缘颜色对检测,获得候选车牌边缘图像(3)对候选车牌边缘图像进行闭运算获得连通域图像(4)计算各连通域的宽高比,剔除不在阈值范围内的连通域,若只剩下一个连通域,则可确认为车牌区域,转(7)车牌定位算法之一(5)若还有多于一个连通域,则计算r。剔除不在阈值范围内的连通域,若只剩下一个连通域,则可确认为车牌区域,转(7)(6)若还有多于一个连通域,则对其进行彩色边缘检测然后进行水平扫描,统计每行灰度值为1的个数N,如果有连续M行以上N∈[n1,n2],则可认为此连通域为车牌区域(7)在原始图像中提取车牌图像其它方法:自适应边界搜索法
利用倒L型、水平直线、垂直直线这些结构元素搜索、定位字符,然后找出符合一定格式的字符群,即认为是车牌。
其它方法:区域生长法
对边缘图像进行均匀性区域生长,以获得潜在的车牌区域,然后利用车牌的几何特征以及车牌区域内的边缘灰度直方图统计特征删除伪车牌,获取真实车牌。其它方法:形态学运算法
灰度图像数学形态学运算法则利用车牌形状特征、字符排列格式特征,对预处理后的灰度图像进行一系列的形态学运算,得到直线与一定数目的字符相邻的区域即认为是车牌。
其它方法:DFT变换法
DFT变换法是先对图像逐行做DFT变换,然后把频率系数逐行累加平均并根据这些平均值做出频谱曲线,根据频谱曲线中的“峰”的起始点位置确定车牌水平位置,对这一水平区域逐行做DFT变换可确定车牌竖直位置。虽然上述车牌定位算法已在实践中取得成功,但对于车辆实时监控系统来说上述方法所需的时间仍然偏长。其它方法:图像差分投影法
基于图像差分投影法:将车辆灰色图像按水平方向求差分图,然后按垂直方向求差分,最后对差分后的车辆图像分别在水平和垂直方向投影,按照给定的车牌尺寸范围找出可似车牌区域;按照水平和垂直方向投影得出有可能的车牌区域有三个,包括两个车灯区,由于车灯区在尺寸和字符数上不符合常规车牌特征,所以即可排除,从而仅剩下唯一的车牌区域,再从灰色图像中切出真正的车牌区图像。
三、车牌字符识别技术与通用的OCR识别方法类似模板匹配法 首先对字符二值化,并归一化字符尺寸,然后进行模板匹配,选取择最匹配输出神经网络匹配法,两种算法:(1)先对各字符进行特征提取,利用特征训练网络分类器,然后用分类器识别字符(2)由网络对输入图像自动提取特征并识别1、预处理车牌经定位、分割检出后,基本上具有被识别的条件,但还需做适当预处理预处理:(1)图像二值化 在彩色图像灰度化后,因车牌类型不同,会出白底黑字和黑底白字两种,需要统一为一种(2)字符分割2、二值化二值化的关键是阈值的选择二种方法:全局阈值、局部阈值全局阈值其中hl是灰度值为l的像素个数。3、倾斜校正提取的车牌图像有可能是倾斜的,为了便于识别,需对图像进行倾斜度校正方法:哈夫(Hough)变换 计算车牌图像上、下边界直线计算边界直线的倾斜度P倾斜度校正拍摄造成的倾斜字符二值化后的倾斜字符4、尺寸归一化字符的大小归一化可以简单地用统计分析法来完成归一化内容: (1)位置归一化,即把字符移到规定的位置上,使字符的质心对中,也可字符边框定位 (2)大小归一化,使被识别字符具有同样大小5、字符识别识别方法较多匹配法识别采用相关函数作为相似度测度 其中,T为模板,S为模板覆盖下的图像子块,i、j为子块左上角坐标,M、N为模板长和宽6、字符优化按照上述车牌定位和切割方法取得的单个字符图像,可能存在字符与边框相连、字符变形和字符断裂等情况,为此在真正识别之前需要对字符位图作进一步的技术处理;常用的方法是将用于识别的字符位图按新的点阵大小重新采样,然后搜索字符位图的准确上下左右边界值,依照字符位图的宽高值和新的边界值重新确定字符像素点,并排除非字符情况,如左右边界值之差过小、上下边界差过小等情况即认为非字符。
7、字符类型民用车汉字:京、津、晋、冀、蒙、辽、吉、黑、沪、苏、浙、皖、闽、赣、鲁、豫、鄂、湘、粤、桂、琼、川、贵、云、藏、陕、甘、青、宁、新,渝”;英文字母:除“I”外的“A—Z”其他字母;数字:0—9;数字和字母:“WJ”、“警”+0—9;军用车汉字:甲、乙、丙、丁、戊、己、庚、辛、壬、癸、子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥;民用车尾字:包括“0—9、学、试、领、港”等字。8、标准特征库将切分下来的字符图像变换到40×40的点阵空间上,按照水平和垂直方向提取二值特征、按照字符结构在水平、垂直、左、右四个方向的几何投影图像特征建立多维特征库,其中标准汉字从宋体字库中选取,字母及数字从OCR-A字库中选取。对标准字符分别进行归一化、轮廓化和特征抽取,标准模板就是从中抽取特征得到的特征向量。
10、字符匹配两种主要方法:模板匹配法和人工神经网络算法;模板匹配算法首先把待识别字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果;基于人工神经网络的算法主要有两种:(1)一种是先对待识别字符进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳师范大学《计算机网络原理》2021-2022学年第一学期期末试卷
- 病患满意度调查与改进措施计划
- 西南医科大学《程序设计》2021-2022学年第一学期期末试卷
- 手术安全用药管理制度
- 手术室剖宫产小讲课
- 《增强法律意识》课件
- 西昌学院《简笔画》2021-2022学年第一学期期末试卷
- 西北大学现代学院《网络舆情监测与研判》2022-2023学年第一学期期末试卷
- 西北大学《微机原理与接口技术》2022-2023学年第一学期期末试卷
- 西北大学《面向对象程序设计》2021-2022学年第一学期期末试卷
- 【浙江省S村乡村振兴美丽新村建设规划现状及问题的调查报告(含问卷)16000字(论文)】
- 2024冬枣承包合同
- CJJ58-2009城镇供水厂运行、维护及安全技术规程
- 2024年建设工程项目委托代建管理合同(二篇)
- 2024二手房买方违约催告函范本
- DZ∕T 0203-2020 矿产地质勘查规范 稀有金属类(正式版)
- 消防心理健康教育
- 汉密尔顿抑郁和焦虑量表
- 医学心理学题库含答案
- 2024年社区工作者考试必考1000题及完整答案
- 音乐的美及其鉴赏智慧树知到期末考试答案2024年
评论
0/150
提交评论