




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Introduction
Patternrecognitiontechniquesareusedtoautomaticallyclassifyphysicalobjects(handwrittencharacters,tissuesamples)orabstractmultidimensionalpatterns(n
pointsin
d
dimensions)intoknownorpossiblyunknowncategories.Anumberofcommercialpatternrecognitionsystemsareavailableforcharacterrecognition,handwritingrecognition,documentclassification,fingerprintclassification,speechandspeakerrecognition,whitebloodcell(leukocyte)classification,militarytargetrecognition,etc.Mostmachinevisionsystemsemploypatternrecognitiontechniquestoidentifyobjectsforsorting,inspection,andassembly.Thedesignofapatternrecognitionsystemrequiresthefollowingmodules:(i)sensing,(ii)featureextractionandselection,(iii)decisionmakingand(iv)performanceevaluation.Theavailabilityoflowcostandhighresolutionsensors(e.g.,digitalcameras,microphonesandscanners)anddatasharingovertheInternethaveresultedinhugerepositoriesofdigitizeddocuments(text,speech,imageandvideo).Needforefficientarchivingandretrievalofthisdatahasfosteredthedevelopmentofpatternrecognitionalgorithmsinnewapplicationdomains(e.g.,text,imageandvideoretrieval,bioinformatics,andfacerecognition).
Designofapatternrecognitionsystemtypicallyfollowsoneofthefollowingapproaches:(i)templatematching,(ii)statisticalmethods,(iii)syntacticmethodsand(iv)neuralnetworks.Thiscoursewillintroducethefundamentalsofstatisticalpatternrecognitionwithexamplesfromseveralapplicationareas.Techniquesforanalyzingmultidimensionaldataofvarioustypesandscalesalongwithalgorithmsforprojection,dimensionalityreduction,clusteringandclassificationofdatawillbeexplained.Thecoursewillpresentvariousapproachestoexploratorydataanalysisandclassifierdesignsostudentscanmakejudiciouschoiceswhenconfrontedwithrealpatternrecognitionproblems.Itisimportanttoemphasizethatthedesignofacompletepatternrecognitionsystemforaspecificapplicationdomain(e.g.,remotesensing)requiresdomainknowledge,whichisbeyondthescopeofthiscourse.StudentswilluseavailableMATLABsoftwarelibraryandimplementsomealgorithmsusingtheirchoiceofaprogramminglanguage.
Prerequisites
CSE232,MTH314,andSTT441,orequivalentcourses.
TextBook
Duda,HartandStork,PatternClassification,SecondEdition,Wiley,2001.
Youmayfindthe
erratalist
useful.
AnumberofbooksonpatternrecognitionhavebeenputontheAssignedReadingintheEngineeringLibrary.Inaddition,anumberofjournals,includingPatternRecognition,PatternRecognitionLetters,IEEETrans.PatternAnalysis&MachineIntelligence(PAMI),IEEETrans.Geoscience&RemoteSensing,IEEETrans.ImageProcessing,andIEEETrans.Speech,Audio,andLanguageProcessingroutinelypublishpapersonpatternrecognitiontheoryandapplications.
AssignedReading
FollowingbooksareonholdintheEngineeringlibraryforassignedreadingforCSE802.
TheodoridisandKoutroumbas
PatternRecognition
ChristopherBishop
PatternRecognitionandMachineLearning
Fukunaga
IntroductiontoStatisticalPatternRecognition
DevijverandKittler
PatternRecognition:AStatisticalApproach
TouandGonzalez
PatternRecognitionPrinciples
YoungandCalvert
Classification,EstimationandPatternRecognition
Pavlidis
StructuralPatternRecognition
GonzalezandWintz
SyntacticPatternRecognition
Oja
SubspaceMethodsofPatternRecognition
Watanabe
PatternRecognition:HumanandMechanical
JainandDubes
AlgorithmsforClusteringData
(Downloadthebook)
Schalkoff
PatternRecognition:Statistic,StructuralandNeuralApproaches
CourseSchedule
Jan8
IntroductiontoPatternRecognition(Ch1)
StatisticalPatternRecognition:AReview
Lectureslides:
PatternRecognition
HW1
assigned
HW1Solutions
Jan10,15,17
StatisticalDecisionTheory(Ch2)
Jan15:
HW2
assigned;
HW1due
Lectureslides:
Chapter2
NotesonBayesClassification
AnIntroductiontoMatlab
.
Jan22
StatisticalDecisionTheory(Ch2)
Lectureslides:
Neyman-PearsonRule
LinearDiscriminantFunctions
Jan24,29
ParameterEstimation(Ch3)
BayesEstimatorformultivariateGaussiandensitywithunknowncovariancematrices
BayesEstimatorunderquadraticloss
Jan24:
HW3
assigned;
HW2due
Lectureslides:
Chapter3
Jan31
ParameterEstimation(Ch3)
CurseofDimensionality(Ch3)
CoinTossingExample
AProblemofDimensionality:ASimpleExample
Lectureslides:
CurseofDimensionality
Feb5,7
ComponentanalysisandDiscriminants(Ch3)
PrincipleComponentAnalysis(PCA)
Principalcomponentanalysisforfacerecognition.
Lectureslides:
ComponentAnalysis&Discriminants
Feb5:
HW4assigned;
HW3due
Feb12,14,19
NonparametricTechniques(Ch4)
Lectureslides:
NonparametricTechniques
ABranchandBoundAlgorithmforComputingk-NearestNeighbors
Feb19:
HW5assigned;
HW4due
Feb21
DecisionTrees(Ch8)
lectureslides
HierarchicalClassifierDesignUsingMutualInformation
-SethiandSarvarayudu
Feb26
MidTermExam
Feb28
ProjectDiscussion
Mar5,7
SPRINGBREAK
Mar12
ProjectProposalDue(2pages)
LinearDiscriminantfunctions(Ch5)
Lectureslides:
Lineardiscriminantfunctions
Mar14,19
LinearDiscriminantfunctions(Ch5)
SupportVectorMachines
Mar14:
HW6assigned;
HW5due
Mar21,26
NeuralNetworks(Ch6)
Lectureslides
Lectureslides-2
audiofile-1forLectureslides-2
audiofile-2forLectureslides-2
audiofile-3forLectureslides-2
Anoteoncomparingclassifiers
ATutorialonArtificialNeuralNetworks
Performanceevaluationofpatternclassifiersforhandwrittencharacterrecognition
Mar28,Apr2
ErrorRateEstimation,Bagging,Boosting(Ch9)
Mar28:
HW7assigned,
HW6due
Apr4
ClassifierCombination(Ch9)
Lectureslidesonclassifiercombination
CombinationofMultipleClassifiersUsingLocalAccuracyEstimates
byWoods,KegelmeyerandBowyer
Handwritingdigitsrecognitionbycombiningclassifiers
byvanBreukelen,Duin,TaxanddenHartog
Apr9
FeatureSelection
Lectureslidesonfeatureselection
BranchandBoundAlgorithmforFeatureSubsetSelection
byNarendraandFukunaga
FeatureSelection:Evaluation,Application,andSmallSamplePerformance
byJainandZongker
Apr11,16,18
UnsupervisedLearning,Clustering,andMultidimensionalScaling(Ch10)
April11:
HW7due
LectureSlides:Introductiontoclustering
LectureSlides:EMAlgorithm
LectureSlides:Largescaleclustering
TalkonLargeScaleClustering
DataClustering:50YearsBeyondK-means
(Download
PresentationSlides
here)
GraphTheoreticalMethodsforDetectingandDescribingGestaltClusters
byC.Zahn
ANonlinearMappingforDataStructureAnalysis
byJ.Sammon
RepresentationandRecognitionofHandwrittenDigitsUsingDeformableTemplates
byJainandZongker
Apr23
Semi-supervisedlearning
Semi-supervisedlearning
byXiaojinZhu
BoostCluster
byLiu,JinandJain
ConstrainedK-meansClusteringwithBackgroundKnowledge
byWagstaffetal.
Semi-supervisedclusteringbyseeding
byBasuetal.
Apr25
FinalProjectPresentation
FinalProjectReportDue
May1
FINALEXAM,7:45a.m.-9:45a.m.,
3400EB
Grading
Coursegradewillbeassignedbasedonscoresonsixhomeworkassignments,twoexamsandoneproject.Weightsforthesethreecomponentsareasfollows:HW(25%),MIDTERMEXAM(25%),FINALEXAM(25%),PROJECT(25%).Thecumulativescorewillbemappedtothelettergradeasfollows:90%orhigher:4.0;85%to90%:3.5;80%to85%:3.0andsoon.
Boththeexamswillbeclosedbook.MakeupexamswillbegivenONLYifproperlyjustified.
Homeworksolutionsmustbeturnedintheclassonthedatetheyaredue.Latehomeworksolutionswillnotbeaccepted.Homeworksolutionsshouldbeeithertypedorneatlyprinted.
PleaserefertoMSU'spolicyonthe
IntegrityofScholarship.
Allhomeworksolutionsmustreflectyourownwork.Failuretodosowillresultinagradeof0inthecourse.
CourseProject
Thepurposeoftheprojectistoenablethestudentstogetsomehands-onexperienceinthedesign,implementationandevaluationofpatternrecognitionalgorithms.Tofacilitatethecompletionoftheprojectinasemester,itisadvisedthatstudentsworkinteamsoftwo.Youareexpectedtoevaluatedifferentpreprocessing,featureextraction,andclassification(includingbaggingandboosting)approachestoachieveashighaccuracyaspossibleontheselectedclassificationtask.Thetaskfortheprojectisdescribed
here
.
Theprojectreportshouldclearlyexplaintheobjectiveofthestudy,somebackgroundwor
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阳光家园委托协议书
- 车辆保单转让协议书
- 酒厂股份合作协议书
- 高层年度分红协议书
- 雪糕生意转让协议书
- 餐饮机器转让协议书
- 通讯施工安全协议书
- 车辆有偿借用协议书
- 设备制造技术协议书
- 酒店预订年会协议书
- 幼儿园各类档案借阅登记表
- SCL-90量表详细
- 蒸汽疏水阀性能监测斯派莎克工程中国有限公司-Armstrong
- 机械创新设计技术结课论文
- 公路工程项目环境保护措施及其可行性论证
- 普通车床的主轴箱设计机械外文文献翻译、中英文翻译、外文翻译
- 神经外科各种引流管的护理精品课件
- 湘教版初中地理会考重点图复习汇集
- 隧道CRD法施工工法
- 年产10万吨飞灰水洗资源综合利用项目可行性研究报告模板
- 八年级音乐下册 第7单元《当兵的人》好男儿就是要当兵课件1 湘教版
评论
0/150
提交评论