2023河南中考数学类比探究学生_第1页
2023河南中考数学类比探究学生_第2页
2023河南中考数学类比探究学生_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学类比探究实战演练(一)(10分)如图1,在矩形ABCD中,AB=mBC,E为BC上一点,且BC=nBE,连接AE,过点B作BM⊥AE,交AE于点M,交AC于点N.(1)如图2,当m=1,n=3时,求证:AN=3CN;(2)如图3,当m=1时,求AN与CN之间的数量关系;.中考数学类比探究实战演练(二)(10分)小华遇到这样一个问题:在菱形ABCD中,∠ABC=60°,边长为4,在菱形ABCD内部有一点P,连接PA,PB,PC,求PA+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是:如图1,将△APC绕点C顺时针旋转60°,恰好旋转至△DEC,连接PE,BD,则BD的长即为所求.(1)请你写出在图1中,PA+PB+PC的最小值为________.(2)参考小华思考问题的方法,解决下列问题:①如图2,在△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接PA,PB,PC,求PA+PB+PC的最小值.②如图3,在正方形ABCD中,AB=5,P为对角线BD上任意一点,连接PA,PC,请直接写出PA+PB+PC的最小值(保留作图痕迹).中考数学类比探究实战演练(三)(10分)如图,在Rt△ABC中,∠ACB=90°,BC=nAC,CD⊥AB于D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,连接EF.(1)探究发现:如图1,若n=1,点E在线段AC上,则tan∠EFD=____.(2)数学思考:①如图2,若点E在线段AC上,则tan∠EFD=____(用含n的代数式表示).②当点E在直线AC上运动时,①中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.从“点E是线段AC延长线上的任意一点”或“点E是线段AC反向延长线上的任意一点”中,任选一种情况,在图3中画出图形,给予相应的证明或理由.(3)拓展应用:若AC=,BC=,DF=,请直接写出CE的长.中考数学类比探究实战演练(四)(10分)已知:在△AOB与△COD中,OA=OB,OC=OD,∠AOB=∠COD=90°.(1)如图1,点C,D分别在边OA,OB上,连接AD,BC,点M为线段BC的中点,连接OM,则线段AD与OM之间的数量关系是__________,位置关系是_________.(2)如图2,连接AD,BC,点M为线段BC的中点,连接OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由.(3)如图3,将图1中的△COD绕点O逆时针旋转到使△COD的一边OD恰好与△AOB的一边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点,请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.中考数学类比探究实战演练(五)(10分)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF=EG.(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,求的值.图1图2图3中考数学类比探究实战演练(六)(10分)如图1,在等腰Rt△ABC和等腰Rt△CDE(CD>BC)中,点C,B,D在同一直线上,点M是AE的中点,连接MD,MB.(1)探究线段MD,MB的位置关系及数量关系,并证明.(2)将图1中的△CDE绕点C顺时针旋转45°,使△CDE的斜边CE恰好与△ABC的边BC垂直,如图2,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若将图2中的△ABC绕点C逆时针旋转大于0°且小于45°的角,如图3,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.图1图2图3中考数学类比探究实战演练(七)(10分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF;②CF=BC-CD.(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系.(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变.①请直接写出CF,BC,CD三条线段之间的关系;②若连接正方形的对角线AE,DF,交点为O,连接OC,探究△AOC的形状,并说明理由.图1图2图3中考数学类比探究实战演练(八)(10分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.(1)如图1,若点D与点C重合,AB=AC,探究线段BE与FD的数量关系.(2)如图2,若点D与点C不重合,AB=AC,探究线段BE与FD的数量关系,并加以证明;(3)如图3,若点D与点C不重合,AB=kAC,求的值(用含k的式子表示).图1图2图3中考数学类比探究实战演练(九)(10分)点A,B分别是两条平行线m,n上任意一点,在直线n上找一点C,使BC=kAB,连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图1,当∠ABC=90°,k=1时,判断线段EF和EB之间的数量关系,并证明.(2)如图2,当∠ABC=90°,k≠1时,(1)中的结论还成立吗?若成立,请证明;若不成立,请重新判断线段EF和EB之间的数量关系.(3)如图3,当0°<∠ABC<90°,k=1时,探究EF和EB之间的数量关系,并证明.图1图2图3中考数学类比探究实战演练(十)(10分)在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)如图2,若∠ABC=90°,G是EF的中点,连接DB,DG,直接写出∠BDG的度数;(3)如图3,若∠ABC=120°,FG∥CE,且FG=CE,连接DB,DG,求∠BDG的度数.图1图2图3中考数学类比探究实战演练(十一)(10分)已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B向直线CP作垂线,垂足分别为E,F,Q是斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是___________,QE与QF的数量关系是______________.(2)如图2,当点P不与点Q重合时,试判断QE与QF的数量关系,并给予证明.(3)如图3,当点P在线段BA(或AB)的延长线上时,(2)中的结论是否仍然成立?请画出图形并给予证明.中考数学类比探究实战演练(十二)(10分)问题解决:如图1,将正方形纸片折叠,使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论