控制系统的数学描述_第1页
控制系统的数学描述_第2页
控制系统的数学描述_第3页
控制系统的数学描述_第4页
控制系统的数学描述_第5页
已阅读5页,还剩119页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于控制系统的数学描述第一页,共一百二十四页,编辑于2023年,星期一数学模型:描述系统输入、输出变量及内部变量之间因果关系的数学表达式。建立数学模型的方法有两种:解析法:分析系统各环节运动机理,按照其遵循的物理化学规律列写输入输出变量之间关系的数学表达式。实验法:对系统输入某种测试信号,记录系统或各环节输出变量的运动响应。通过数据处理选择一种数学模型可以近似地表示这种响应,该过程称为系统辨识。第二页,共一百二十四页,编辑于2023年,星期一2.1控制系统的微分方程描述2.2拉氏变换及反变换2.3控制系统的传递函数描述2.4控制系统的动态结构图2.5控制系统的信号流图2.6状态空间方程控制系统描述公式描述图形描述第三页,共一百二十四页,编辑于2023年,星期一微分方程可以描述被控量(系统输出)和给定量(系统输入)或扰动量(扰动输入)之间的函数关系。通过对微分方程的求解、特征根分析等方法可以了解系统稳定性、变量动态响应轨迹等性能。

2.1控制系统的微分方程描述第四页,共一百二十四页,编辑于2023年,星期一2.1.1建立微分方程建立控制系统的微分方程,需要了解整个系统的组成环节和工作原理。列写微分方程的一般步骤如下:

分析元件的工作原理和在系统中的作用,确定元件的输入量和输出量(必要时还要考虑扰动量),并根据需要引进一些中间变量。根据各元件在工作过程中所遵循的物理或化学定律,按工作条件忽略一些次要因素,并考虑相邻元件的彼此影响,列出微分方程。常用的定律有:电路系统的基尔霍夫定律、力学系统的牛顿定律和热力学定律等等。消去中间变量后得到描述输出量与输入量(包括扰动量)关系的微分方程即系统的数学模型。第五页,共一百二十四页,编辑于2023年,星期一例2.1.1电气系统

电气系统中最常见的装置是由电阻、电感、电容、运算放大器等元件组成的电路,又称电气网络。仅由电阻、电感、电容(无源器件)组成的电气网络称为无源网络。如果电气网络中包含运算放大器(有源器件),就称为有源网络。例由电阻R、电感L和电容C组成无源网络。

ui输入,uo输出,求微分方程。-LCui(t)uo(t)i(t)+-+R第六页,共一百二十四页,编辑于2023年,星期一消去中间变量i(t),可得解设回路电流为i(t)如图所示。由基尔霍夫电压定律可得到式中i(t)是中间变量。第七页,共一百二十四页,编辑于2023年,星期一

机械系统指的是存在机械运动的装置,它们遵循物理学的力学定律。机械运动包括直线运动(相应的位移称为线位移)和转动(相应的位移称为角位移)两种。例一个由弹簧-质量-阻尼器组成的机械平移系统如图所示。m为物体质量,k为弹簧系数,f

为粘性阻尼系数,外力F(t)为输入量,位移x(t)为输出量。列写系统的运动方程。

例2.1.2机械系统xmFkf第八页,共一百二十四页,编辑于2023年,星期一解在物体受外力F的作用下,质量m相对于初始状态的位移、速度、加速度分别为x、dx/dt、d2x/dt2

。设外作用力F为输入量,位移x为输出量。根据弹簧、质量、阻尼器上力与位移、速度的关系和牛顿第二定律,可列出作用在m上的力和加速度之间的关系为

xmFkk和f分别为弹簧的弹性系数和阻尼器的粘性摩擦系数。负号表示弹簧力的方向和位移的方向相反;粘性摩擦力的方向和速度的方向相反。第九页,共一百二十四页,编辑于2023年,星期一比较上面两个例子可见,虽然它们为两种不同的物理系统,但它们的数学模型的形式却是相同的

例如上述RLC串联网络系统和弹簧-质量-阻尼器系统即为一对相似系统。在相似系统中,占据相应位置的物理量称为相似量。我们把具有相同数学模型的不同物理系统称为相似系统第十页,共一百二十四页,编辑于2023年,星期一

电枢控制式直流电动机电机电枢输入电压电机输出转角电枢绕组电阻电枢绕组电感流过电枢绕组的电流电机感应反电动势电机转矩电机及负载折合到电机轴上的转动惯量电机及负载折合到电机轴上的粘性摩擦系数例2.1.3机电系统第十一页,共一百二十四页,编辑于2023年,星期一第十二页,共一百二十四页,编辑于2023年,星期一将上面四个方程联立,可得第十三页,共一百二十四页,编辑于2023年,星期一考虑到:可将上式改写成

可知:对于同一个系统,若从不同的角度研究问题,则所得出的数学模型式不一样的。

电机时间常数电机传递系数第十四页,共一百二十四页,编辑于2023年,星期一注:通常将微分方程写成标准形式,即将与输入量有关的各项写在方程的右边,与输出量有关的各项写在方程的左边。方程两边各导数项均按降阶顺序排列。单输入、单输出系统微分方程的一般形式:第十五页,共一百二十四页,编辑于2023年,星期一实际工程中,构成系统的元件都具有不同程度的非线性,如下图所示。放大器饱和电机死区齿轮间隙继电器开关特性2.1.2非线性系统的线性化严格讲:所有系统都是非线性的第十六页,共一百二十四页,编辑于2023年,星期一尽管线性系统的理论已经相当成熟,但非线性系统的理论还远不完善。另外,迭加原理不适用于非线性系统,这给解非线性系统带来很大不便。故我们尽量对所研究的系统进行线性化处理,然后用线性理论进行分析。实践证明,这样做能够圆满地解决许多工程问题,有很大的实际意义。第十七页,共一百二十四页,编辑于2023年,星期一线性化条件:非线性因素对系统影响很小系统变量只发生微小偏移,可通过切线法进行线性化,求其增量方程

不是各个变量的绝对数量,而是它们偏离平衡点的量第十八页,共一百二十四页,编辑于2023年,星期一y=f(r)r—元件的输入信号,y—元件的输出信号0r0r0+△ry0y0+△yyAB略去高次项,设原运行于某平衡点(静态工作点)A点:r=r0,y=y0,且y0=f(r0)B点:当r变化△

r,

y=y0+△

y函数在(r0,y0

)点连续可微,在A点展开成泰勒级数,即第十九页,共一百二十四页,编辑于2023年,星期一

单摆第二十页,共一百二十四页,编辑于2023年,星期一线性化步骤:找出静态工作点(工作点不同,所得方程系数也不同)在工作点附近展开成泰勒级数略去高阶项,得到关于增量的线性化方程第二十一页,共一百二十四页,编辑于2023年,星期一作业习题:2-1(1)(2)第二十二页,共一百二十四页,编辑于2023年,星期一时域微分方程复变函数代数方程拉氏变换拉氏反变换2.2拉氏变换及反变换一种解线性微分方程的简便方法分析工程控制系统的基本数学方法第二十三页,共一百二十四页,编辑于2023年,星期一2.2.1拉氏变换定义对于函数,满足下列条件象函数原函数复变量量纲第二十四页,共一百二十四页,编辑于2023年,星期一例2.2.1单位阶跃函数

0t1第二十五页,共一百二十四页,编辑于2023年,星期一例2.2.2指数函数0t1第二十六页,共一百二十四页,编辑于2023年,星期一第二十七页,共一百二十四页,编辑于2023年,星期一第二十八页,共一百二十四页,编辑于2023年,星期一例2.2.4幂函数

0t第二十九页,共一百二十四页,编辑于2023年,星期一应记住的

一些简单函数的

拉氏变换第三十页,共一百二十四页,编辑于2023年,星期一2.2.2拉氏变换的性质及应用叠加性质微分定理积分定理衰减定理延时定理初值定理终值定理时间比例尺改变的象函数tx(t)的象函数10的象函数11周期函数的象函数12卷积分的象函数第三十一页,共一百二十四页,编辑于2023年,星期一叠加性质第三十二页,共一百二十四页,编辑于2023年,星期一微分定理第三十三页,共一百二十四页,编辑于2023年,星期一微分定理两个重要推论:第三十四页,共一百二十四页,编辑于2023年,星期一积分定理两个推论:第三十五页,共一百二十四页,编辑于2023年,星期一4衰减定理原函数衰减,象函数超前Step1、找出简单函数;Step2、套用性质;第三十六页,共一百二十四页,编辑于2023年,星期一5延时定理00原函数滞后,象函数衰减第三十七页,共一百二十四页,编辑于2023年,星期一注意:f(t)表达式里所有的t都要延时!Step1、找出简单函数;Step2、套用性质;第三十八页,共一百二十四页,编辑于2023年,星期一6初值定理第三十九页,共一百二十四页,编辑于2023年,星期一终值定理

第四十页,共一百二十四页,编辑于2023年,星期一8时间比例尺改变的象函数

第四十一页,共一百二十四页,编辑于2023年,星期一

9

tx(t)的象函数

10的象函数

10的象函数

第四十二页,共一百二十四页,编辑于2023年,星期一11周期函数的象函数12卷积分的象函数第四十三页,共一百二十四页,编辑于2023年,星期一例2-1

求单位脉冲函数的象函数

0t第四十四页,共一百二十四页,编辑于2023年,星期一例求象函数

解:第四十五页,共一百二十四页,编辑于2023年,星期一作业习题:2-3(1)(2)第四十六页,共一百二十四页,编辑于2023年,星期一2.2.3拉氏反变换时域微分方程复变函数代数方程拉氏变换拉氏反变换第四十七页,共一百二十四页,编辑于2023年,星期一拉氏反变换方法:利用拉氏变换表利用部分分式展开法,然后再利用已知函数的拉氏变换和拉氏变换的性质第四十八页,共一百二十四页,编辑于2023年,星期一控制系统象函数的一般形式:将分母因式分解后,包括三种不同的极点情况,采用部分分式法进行拉氏反变换使分子为零的S值称为函数的零点使分母为零的S值称为函数的极点第四十九页,共一百二十四页,编辑于2023年,星期一三种不同的极点情况只含有不同单极点情况含有共扼复极点情况含有多重极点情况第五十页,共一百二十四页,编辑于2023年,星期一1、只含有不同单极点情况:对分母分解因式再分解为部分分式第五十一页,共一百二十四页,编辑于2023年,星期一第五十二页,共一百二十四页,编辑于2023年,星期一----即含有不可因式分解的二次因式方法:

待定系数法将不可分解的二次因式做为一项分解为:将右边的部分分式通分,按分子分母对应项系数相等的原则得到关于待定系数的方程组,求解即可.的原函数求法—配方,利用2、含有共扼复极点情况:第五十三页,共一百二十四页,编辑于2023年,星期一1-10第五十四页,共一百二十四页,编辑于2023年,星期一第五十五页,共一百二十四页,编辑于2023年,星期一3、含有多重极点情况:第五十六页,共一百二十四页,编辑于2023年,星期一其中的求法:第五十七页,共一百二十四页,编辑于2023年,星期一第五十八页,共一百二十四页,编辑于2023年,星期一第五十九页,共一百二十四页,编辑于2023年,星期一作业2-4(1)(3)第六十页,共一百二十四页,编辑于2023年,星期一用拉氏变换解微分方程的步骤:1.对微分方程进行拉氏变换,转换成以象函数为变量的代数方程;2.解代数方程,求出象函数表达式;3.作拉氏反变换,求出微分方程的时间解。2.2.4用拉氏变换解常系数线性微分方程第六十一页,共一百二十四页,编辑于2023年,星期一第六十二页,共一百二十四页,编辑于2023年,星期一作业2-5第六十三页,共一百二十四页,编辑于2023年,星期一2.3.1传递函数的定义和性质传递函数是在拉氏变换基础上,以系统本身的参数描述的线性定常系统输入量与输出量的关系式。表达了系统内在的固有特性,而与输入量或驱动函数无关。它是和微分方程一一对应的一种数学模型,它能方便地分析系统或元件结构参数对系统响应的影响。2.3控制系统的传递函数描述第六十四页,共一百二十四页,编辑于2023年,星期一1.定义零初始条件下,线性定常系统输出量的拉氏变换与输入量的拉氏变换之比,称为该系统的传递函数,记为G(s),即:意义:第六十五页,共一百二十四页,编辑于2023年,星期一

传递函数的求法

线性定常系统(环节)的一般表达式(零初始条件)第六十六页,共一百二十四页,编辑于2023年,星期一当初始条件为零时,对上式进行拉氏变换后可得传递函数为例2.9求图示RC电路的传递函数,其中ui(t)是输入电压,uo(t)是输出电压

解由基尔霍夫电压定律可得第六十七页,共一百二十四页,编辑于2023年,星期一2.关于传递函数的几点补充说明

(1)传递函数只适用于线性定常系统。(2)传递函数表达式中各项系数的值完全取决于系统的结构和参数,并且与微分方程中各导数项的系数相对应。(3)实际系统传递函数中分母多项式的阶数n总是大于或等于分子多项式的阶数m

,即n≥m。通常将分母多项式的阶数为n的系统称为n阶系统。(4)传递函数只能表示单输入、单输出的关系。第六十八页,共一百二十四页,编辑于2023年,星期一上式中Kg──零极点形式传递函数的根轨迹增益;

-zi──分子多项式M(s)=0的根,称为零点;

-pj

──分母多项式N(s)的根,称为极点。N(s)=0是控制系统的特征方程式。-zi、-pj可为实数、虚数、或复数。若为虚数、或复数,必为共轭虚数、或共轭复数。(5)零极点表示法第六十九页,共一百二十四页,编辑于2023年,星期一(6)时间常数表示法上式中τi──分子各因子的时间常数;

Tj──分母各因子的时间常数;

K──时间常数形式传递函数的增益;通常称为传递系数。第七十页,共一百二十四页,编辑于2023年,星期一一般形式第七十一页,共一百二十四页,编辑于2023年,星期一

一个系统可看成由一些环节组成的,可能是电气的,机械的,液压的,气动的等等。尽管这些系统的物理本质差别很大,但是描述他们的动态性能的传递函数可能是相同的。如果我们从数学的表达式出发,一般可将一个复杂的系统分为有限的一些典型环节所组成,并求出这些典型环节的传递函数来,以便于分析及研究复杂的系统。控制系统中常用的典型环节有,比例环节、惯性环节、微分环节、积分环节和振荡环节等。以下介绍这些环节的传递函数及其推导。2.3.2典型环节及其传递函数第七十二页,共一百二十四页,编辑于2023年,星期一方框图:K1.比例环节(放大环节)

特点:输出量与输入量成正比,不失真也不延时。

举例:这种类型的环节很多,机械系统中略去弹性的杠杆、作为测量元件的测速发电机(输入为角速度,输出为电压时)以及电子放大器等,在一定条件下都可以认为是比例环节。第七十三页,共一百二十四页,编辑于2023年,星期一例2-9第七十四页,共一百二十四页,编辑于2023年,星期一方框图:1/(Ts+1)2.惯性环节

特点:惯性环节的特点是其输出量不能立即跟随输入量变化,存在时间上的延迟。其中时间常数越大,环节的惯性越大,则延迟的时间也越长。

第七十五页,共一百二十四页,编辑于2023年,星期一例2-11无源滤波电路第七十六页,共一百二十四页,编辑于2023年,星期一例2-12弹簧-阻尼系统第七十七页,共一百二十四页,编辑于2023年,星期一1.00.20.40.60.80.630.870.950.980.99T2T3T4T5Tr(t)ty(t)例设输入信号为单位阶跃信号,其拉普拉斯变换,则得输出量的拉普拉斯变换表达式为在单位阶跃输入信号的作用下,惯性环节的输出信号是指数函数。当时间t=(3~4)T时,输出量才接近其稳态值。

第七十八页,共一百二十四页,编辑于2023年,星期一微分环节理想微分环节永磁式直流测速机第七十九页,共一百二十四页,编辑于2023年,星期一近似微分环节第八十页,共一百二十四页,编辑于2023年,星期一特点:输出正比于输入对时间的积分。4.积分环节方框图:1/s第八十一页,共一百二十四页,编辑于2023年,星期一例

积分调节器电路

在单位阶跃输入信号的作用下,输出量的拉普拉斯变换表达式为输出量随时间成正比地无限增加

第八十二页,共一百二十四页,编辑于2023年,星期一4.二阶振荡环节第八十三页,共一百二十四页,编辑于2023年,星期一方框图:

振荡环节阶跃响应第八十四页,共一百二十四页,编辑于2023年,星期一例无源RLC网络,输入r(t),输出y(t)。解:第八十五页,共一百二十四页,编辑于2023年,星期一6.

延迟环节方框图:将延迟环节的传递函数展开为泰勒级数:当延迟时间很小时,可近似为惯性环节:第八十六页,共一百二十四页,编辑于2023年,星期一特点:

1、输出和输入相同仅延迟时间τ;不失真

2、与其他环节同时存在。人体、计算机系统、液压机械传动、气动传动。原因:延时效应。信号输入环节后,由于环节传递信号的速度有限。输出响应要延迟一段时间τ才能产生。第八十七页,共一百二十四页,编辑于2023年,星期一作业2-8(a)(c)2-9第八十八页,共一百二十四页,编辑于2023年,星期一2.4.1方块图的基本概念

系统方块图又称结构图,是将系统中所有的环节用方块来表示,按照系统中各个环节之间的联系,将各方块连接起来构成的;2.4控制系统的动态结构图G(s)R(s)Y(s)输入信号输出信号方块:环节信号传递的方向第八十九页,共一百二十四页,编辑于2023年,星期一方块图表示的一个典型系统:表明了系统的组成、信号的传递方向;表示出了系统信号传递过程中的数学关系;可揭示、评价各环节对系统的影响;易构成整个系统,并简化写出整个系统的传递函数;直观、方便(图解法)。第九十页,共一百二十四页,编辑于2023年,星期一2.4.2组成④相加点(综合点、比较点)

相同性质的信号进行去取代数和(相同量纲的物理量)G(s)R(s)Y(s)①方块:一个元件(环节)的传递函数②信号流线:箭头表示信号传递方向③分支点:信号多路输出且相等注意:不是将信号均分第九十一页,共一百二十四页,编辑于2023年,星期一1.分析系统各环节物理规律,明确输入输出、求得该环节的传函;2.将同一信号的通路连接在一起,组成完整的方块图动态结构框图可以形象而明确的表达动态过程中系统各环节的数学模型及相关关系,是系统图形化的动态模型。主要绘制步骤:先单一后整体第九十二页,共一百二十四页,编辑于2023年,星期一例2.4.1汽车在凸凹不平的路面行驶,轮胎质量为M2,其弹性可等效为一个弹簧,汽车质量为M1。若以路面的高低位移变化为输入xi(t),车体垂直位移为输出x0(t),则汽车承载系统的简化力学模型如图所示。试建立系统的动态结构方框图。第九十三页,共一百二十四页,编辑于2023年,星期一?第九十四页,共一百二十四页,编辑于2023年,星期一例2.4.2绘制系统方块图第九十五页,共一百二十四页,编辑于2023年,星期一例2.4.3试求图示力学模型的传递函数。其中xi(t)为输入位移,xo(t)为输出位移,k1、k2为弹性刚度,D1、D2为粘性阻尼系数。解:粘性阻尼系数为D的阻尼筒可等效为弹性刚度为DS的弹性元件。并联弹簧的弹性刚度等于各弹簧弹性刚度之和,而串联弹簧弹性刚度的倒数等于各弹簧弹性刚度的倒数之和。ABx1(t)第九十六页,共一百二十四页,编辑于2023年,星期一第九十七页,共一百二十四页,编辑于2023年,星期一XiXoBK1K2F(S)F(S)∴可画出该系统的函数方框图:+F(S)Xo(S)Xi(S)-根据方框图,可得该系统的闭环传递函数为:第九十八页,共一百二十四页,编辑于2023年,星期一2.4.2动态结构图的等效变换及简化

环节的合并分支点/结合点的变位第九十九页,共一百二十四页,编辑于2023年,星期一2.4.2动态结构图的等效变换及简化

G1(s)G3(s)G2(s)1.环节的合并(1)串联G1(s)G2(s)G3(s)第一百页,共一百二十四页,编辑于2023年,星期一(2)并联G1(s)G2(s)G3(s)G1(s)+G2(s)+G3(s)第一百零一页,共一百二十四页,编辑于2023年,星期一(3)反馈G1(s)H(s)G1(S)为前向通道的传递函数H(S)为反馈通道的传递函数G1(S)H(S)为闭环系统的开环传递函数第一百零二页,共一百二十四页,编辑于2023年,星期一2.框图等效变换原则

在对系统进行分析时,为了简化系统的结构图,常常需要对信号的分支点或相加点进行变位运算,以便消除交叉,求出总的传递函数。变位运算的原则是,输入和输出都不变。变换前后的方框图是等效的。第一百零三页,共一百二十四页,编辑于2023年,星期一G(s)G(s)1/G(s)G(s)G(s)G(s)(1)相加点(对信号求和)第一百零四页,共一百二十四页,编辑于2023年,星期一(2)分支点(信号由某一点分开)G(s)G(s)G(s)G(s)G(s)1/G(s)第一百零五页,共一百二十四页,编辑于2023年,星期一(3)分支点之间可任意互换,相加点之间可互换(但注意前后符号一致)。(4)相加点和分支点之间一般不能互换变位第一百零六页,共一百二十四页,编辑于2023年,星期一注意:

有些实际系统,往往是多回路系统,形成回路交错或相套。为便于计算和分析,常将种复杂的方框图简化为较简单的方框图。①方框图简化的关键是解除各种连接之间,包括环路与环路之间的交叉,应设法使它们分开,或形成大环套小环的形式。②解除交叉连接的有效方法是移动相加点或分支点。一般,结构图上相邻的分支点可以彼此交换,相邻的相加点也可以彼此交换。但是,当分支点与相加点相邻时,它们的位置就不能作简单的交换。第一百零七页,共一百二十四页,编辑于2023年,星期一

例2.4.3例2.4.1所示汽车承载系统动态结构框图如图2.4.4所示,试简化系统框图,求总传递函数。第一百零八页,共一百二十四页,编辑于2023年,星期一其传递函数为

给出主要的变换步骤第一百零九页,共一百二十四页,编辑于2023年,星期一例2.4.4

简化下图,求出系统的传递函数。解具有交叉连接的结构图。为消除交叉,可采用相加点、分支点互换的方法处理。(1)将相加点a移至G2之后第一百一十页,共一百二十四页,编辑于2023年,星期一(2)再与b点交换(3)因G4与G1G2并联,G3与G2H是负反馈环节第一百一十一页,共一百二十四页,编辑于2023年,星期一(4)上图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论