硬件工程师笔试、面试题及答案详细版_第1页
硬件工程师笔试、面试题及答案详细版_第2页
硬件工程师笔试、面试题及答案详细版_第3页
硬件工程师笔试、面试题及答案详细版_第4页
硬件工程师笔试、面试题及答案详细版_第5页
已阅读5页,还剩107页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

硬件工程师笔试、面试题及答案详细版

一.浪潮笔试

考察的主要是数电、模电和微机原理的基础知识。

1.有源、无源滤波器

答案:

最初的滤波器主要是由电阻、电感和电容等无源器件构成的无源滤波器,无源滤波器虽然有电路结构简单、使用方便、价格低廉等优点,但它对有用信号成分也会有很大的衰减作用,本身不具备放大能力,而且带负载能力差,性能不够理想。

后来,出现了由运放和RC元件等构成的性能优良的有源滤波电路。

相继出现了开关电容滤波器、单片集成有源滤波器、数字滤波器。

五种滤波器类型:低通滤波器LPF、高通滤波器HPF、全通滤波器APF、带通滤波器BPF、带阻滤波器BEF。

有源滤波器是一种重要的信号处理电路,它可以突出有用频段的信号,衰减无用频段的信号,抑制干扰和噪声信号,达到选频和提高信噪比的目的。

利用开关电容积分器可以构成开关电容滤波器,除了工作频率外,其精度和其他性能均超过了常规的有源滤波器,达到了实用水平。

扩展:

activepowerfilter,APF

利用可关断电力电子器件,产生与负荷电流中谐波分量大小相等、相位相反的电流来抵消谐波的滤波装置。

一、基本概念:

顾名思义该装置需要提供电源,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点(传统的只能固定补偿),实现了动态跟踪补偿,而且可以既补谐波又补无功;三相电路瞬时无功功率理论是APF发展的主要基础理论;APF有并联型和串联型两种,前者用的多;并联有源滤波器主要是治理电流谐波,串联有源滤波器主要是治理电压谐波等引起的问题。有源滤波器同无源滤波器比较,治理效果好,主要可以同时滤除多次及高次谐波,不会引起谐振,但是价位相对高!

二、基本原理:

有源电力滤波器,是采用现代电力电子技术和基于高速DSP器件的数字信号处理技术制成的新型电力谐波治理专用设备。它由指令电流运算电路和补偿电流发生电路两个主要部分组成。指令电流运算电路实时监视线路中的电流,并将模拟电流信号转换为数字信号,送入高速数字信号处理器(DSP)对信号进行处理,将谐波与基波分离,并以脉宽调制(PWM)信号形式向补偿电流发生电路送出驱动脉冲,驱动IGBT或IPM功率模块,生成与电网谐波电流幅值相等、极性相反的补偿电流注入电网,对谐波电流进行补偿或抵消,主动消除电力谐波。

三、基本应用:

谐波主要危害:

•增加电力设施负荷,降低系统功率因数,降低发电、输电及用电设备的有效容量和效率,造成设备浪费、线路浪费和电能损失;

•引起无功补偿电容器谐振和谐波电流放大,导致电容器组因过电流或过电压而损坏或

无法投入运行;

•产生脉动转矩致使电动机振动,影响产品质量和电机寿命;

•由于涡流和集肤效应,使电机、变压器、输电线路等产生附加功率损耗而过热,浪费电能并加速绝缘老化;

•谐波电压以正比于其峰值电压的形式增强了绝缘介质的电场强度,降低设备使用寿命;

•零序(3的倍数次)谐波电流会导致三相四线系统的中线过载,并在三角形接法的变压器绕组•使计量仪表特别是感应式电能表产生计量误差;

•干扰邻近的电力电子设备、工业控制设备和通讯设备,影响设备的正常运行。

四、有源滤波的优点和缺点:

优点:可动态滤除各次谐波,对系统内的谐波能够完全吸收;不会产生谐振。

缺点:造价太高;受硬件限制,在大容量场合无法使用:有源滤波容量单套不超过100KVA,目前最高适用电网电压不超过450V.

五、应用场合

有源电力滤波器可广泛应用于工业、商业和机关团体的配电网中,如:电力系统、电解电镀企业、水处理设备、石化企业、大型商场及办公大楼、精密电子企业、机场/港口的供电系统、医疗机构等。根据应用对象不同,HTAPF-I型有源电力滤波器的应用将起到保障供电可靠性、降低干扰、提高产品质量、增长设备寿命减少设备损坏等作用。

■通信行业

为了满足大规模数据中心机房的运行需要,通信配电系统中的UPS使用容量在大幅上升。据调查,通信低压配电系统主要的谐波源设备为UPS、开关电源、变频空调等。其产生的谐波含量都较高,且这些谐波源设备的位移功率因数极高。通过使用有源滤波器可以提高通信系统及配电系统的稳定性,延长通信设备及电力设备的使用寿命,并且使配电系统更符合谐波环境的设计规范。

■半导体行业

大多数半导体行业的3次谐波非常严重,主要是由于企业中使用了大量的单相整流设备。3次谐波属于零序谐波,具备在中性线汇集的特点,导致中性线压力过大,甚至出现打火现象,存在着极大的生产安全隐患。谐波还会造成断路器跳闸,耽误生产时间。3次谐波在变压器内形成环流,加速了变压器的老化。严重的谐波污染必然对配电系统中的设备使用效率和寿命造成影响。

■石化行业

由于生产的需要,石化行业中存在着大量泵类负载,并且不少泵类负载都配有变频器。变频器的大量应用使石化行业配电系统中的谐波含量大大增加。目前绝大部分变频器整流环节都是应用6脉冲将交流转化为直流,因此产生的谐波以5次、7次、11次为主。其主要危害表现为对电力设备的危害及在计量方面的偏差。使用有源滤波器可以很好地解决这方面的问题。

■化纤行业

为大幅提高熔化率、提高玻璃的熔化质量,以及延长炉龄、节省能源,在化纤行业常用到电助熔加热设备,借助电极把电直接送入燃料加热的玻璃池窑中。这些设备会产生大量的谐波,且三相谐波的频谱和幅值差别比较大。

■钢铁/中频加热行业

钢铁业中常用到的中频炉、轧机、电弧炉等设备都会对电网的电能质量产生重大的影响,使电容补偿柜过载保护动作频繁、变压器和供电线路发热严重、熔断器频繁熔断等,甚至引起电压跌落、闪变。

■汽车制造业

焊机是汽车制造业中不可少的设备,由于焊机具有随机性、快速性及冲击性的特点,使大量使用焊机造成严重的电能质量问题,造成焊接质量不稳、自动化程度高的机器人由于电压不稳而不能工作,无功补偿系统无法正常使用等情况。

■直流电机谐波治理

大型直流电机场所都需要先通过整流设备将交流电转换为直流电,由于此类工程的负载容量都较大,因此在交流侧存在严重的谐波污染,造成电压畸变,严重时会引起事故。■自动化生产线和精密设备的使用

在自动化生产线和精密设备场合,谐波会影响到其正常使用,使智能控制系统、PLC系统等出现故障。

■医院系统

医院对供电的连续性和可靠性有非常严格的要求,0类场所自动恢复供电时间T≤15S,1类场所自动恢复供电时间0.5S≤T≤15S,2类场所自动恢复供电时间T≤0.5S,电压总谐波畸变率THDu≤3%,X光机、CT机、核磁共振都是谐波含量极高的负载。

■剧场/体育馆

可控硅调光系统、大型LED设备等都是谐波源,在运行过程中会产生大量的三次谐波,不但造成配电系统的电力设备效率低下,而且还会造成灯光频闪,对通信、有线电视等微弱电回路产生杂音,甚至产生故障。

六、主要发展状况:

由于有源滤波存在的不足和缺陷,目前国内市场上主要以无源滤波为主;国际上以ABB、ABLEREX(爱普瑞斯)、诺基亚、施耐德(梅兰日兰)、西门子为代表,国内以山大华天,哈工大、西安赛博、南京亚派为代表,另外清华大学电机系研制的CleanPower系列有源电力滤波器在自适应能力,稳定性以及对各种延时的最优补偿方面有了长足的进展,成为了最先进的产品之一。随着电力电子技术的进步,有源电力滤波器以其巨大的技术优势、强大功能、逐渐下降的价格,必将最终取代传统的电容型无功补偿装置,占据市场主流。

【原创】讨论有源滤波器和无源滤波器的缺点以THS7327为例看滤波器的集成化发展方向有源滤波器是由集成运放和R、C组成,众所周知它有很多优点,但也有如下缺点:

1、相对无源要用运放

2、需要提供电源才能工作。

3、电阻、运放等,会产生热噪声,使得电路的噪声增大。。

4、运算放大器等有源元件的高频特性限制带宽。

5、要使用高精度电容与电阻,否则会产生振荡。

6、有源元件补偿损耗,才可以得到高Q值

无源滤波器常是使用电阻、电感与电容构成。尤其是电感存在以下问题:

1、电感的体积大,市面上的1mH电感至少要用1210的封装,比1mH大的电感都要有芯片那么大。

2、电感在电路中使用需要考率多方面:磁的影响了很多方面,电路中遇到磁的问题是最麻烦的问题了。

3、L与C中寄生电阻产生电路中的损耗等

推荐看一本书日本人写的就是翻译得太差了《LC滤波器设计与制作》呵呵

鉴于以上原因,对滤波器的集成化发展迫不及待,集成化使得运放、电阻、电感的性能进一步提高,也使得电路更为便捷。

如TI公司的THS7314/7315/7316/7318/7327/7347等等,都是将滤波器内部集成,通过选通的方式来选择滤波器的频率,THS7327主要是通过对MSB的第6、5、4、3位选择来选取滤波器的频率的,但却仅仅只有5种选择:9/16/35/75/APFMHz;

无源滤波器和有源滤波器的区别有哪些?

【摘要】:无源滤波器又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、3、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。

一、无源滤波器的优点

无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。

二、无源滤波器的分类

无源滤波器主要可以分为两大类:调谐滤波器和高通滤波器。

2.1、调谐滤波器

调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率;

2.2、高通滤波器

高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减高于某一频率的谐波,该频率称为高通滤波器的截止频率。

三、无源滤波器和有源滤波器的区别

无源滤波器和有源滤波器,存在以下的区别:

3.1、工作原理

无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。

3.2、谐波处理能力

无源滤波器只能滤除固定次数的谐波;但完全可以解决系统中的谐波问题,解决企业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除各次谐波。

3.3、系统阻抗变化的影响

无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。

3.4、频率变化的影响

无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。

3.3、负载增加的影响

无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。

3.6、负载变化对谐波补偿效果的影响

无源滤波器随着负载的变化而变化;有源滤波器不受负载变化影响。

3.7、设备造价

无源滤波器较低;有源滤波器太高。

3.8、应用场合对比分析

1.有源滤波容量单套不超过100KVA,无源滤波则无此限制;

2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。

3.有源滤波目前最高适用电网电压不超过430V,而低压无源滤波最高适用电网电压可达3000V。

4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于电信、医院等用电功率较小且谐波频率较高的单位,优于无源滤波。

无源滤波器

英文名称:

passivefilter

电容器、电抗器和电阻器适当组合而成,并兼有无功补偿和调压功能的滤波器。

无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。

无源滤波器的优点

无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。

无源滤波器的分类

无源滤波器主要可以分为两大类:调谐滤波器和高通滤波器。

调谐滤波器

调谐滤波器包括单调谐滤波器和双调谐滤波器,可以滤除某一次(单调谐)或两次(双调谐)谐波,该谐波的频率称为调谐滤波器的谐振频率;

高通滤波器

高通滤波器也称为减幅滤波器,主要包括一阶高通滤波器、二阶高通滤波器、三阶高通滤波器和c型滤波器,用来大幅衰减高于某一频率的谐波,该频率称为高通滤波器的截止频率。

无源滤波器的发展历程

3.1、1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。

3.2、20世纪50年代无源滤波器日趋成熟。

3.3、自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展;

3.4、到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。

3.5、80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。

3.6、90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。当然,对滤波器本身的研究仍在不断进行。

我国滤波器行业现状

我国广泛使用滤波器是50年代后期的事,当时主要用于话路滤波和报路滤波。

经过半个世纪的发展,我国滤波器在研制、生产和应用等方面已纳入国际发展步伐,但由于缺少专门研制机构,集成工艺和材料工业跟不上来,使得我国许多新型滤波器的研制应用与国际发展有一段距离。

无源滤波器和有源滤波器的区别

无源滤波器和有源滤波器,存在以下的区别:

工作原理

无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道;而有源滤波器由电力电子元件和DSP等构成的电能变换设备,检测负载谐波电流并主动提供对应的补偿电流,补偿后的源电流几乎为纯正弦波,其行为模式为主动式电流源输出。

谐波处理能力

无源滤波器只能滤除固定次数的谐波;但完全可以解决系统中的谐波问题,解决企业用电过程中的实际问题,且可以达到国家电力部门的标准;有源滤波器可动态滤除各次谐波。

系统阻抗变化的影响

无源滤波器受系统阻抗影响严重,存在谐波放大和共振的危险;而有源滤波不受影响。频率变化的影响

无源滤波器谐振点偏移,效果降低;有源滤波器不受影响。

负载增加的影响

无源滤波器可能因为超载而损坏;有源滤波器无损坏之危险,谐波量大于补偿能力时,仅发生补偿效果不足而已。

负载变化对谐波补偿效果的影响

无源滤波器随着负载的变化而变化;有源滤波器不受负载变化影响。

设备造价

无源滤波器较低;有源滤波器太高。

应用场合对比分析

1.有源滤波容量单套不超过100KVA,无源滤波则无此限制;

2.有源滤波在提供滤波时,不能或很少提供无功功率补偿,因为要占容量;而无源滤波则同时提供无功功率补偿。

3.有源滤波目前最高适用电网电压不超过450V,而低压无源滤波最高适用电网电压可达3000V。

4.无源滤波由于其价格优势、且不受硬件限制,广泛用于电力、油田、钢铁、冶金、煤矿、石化、造船、汽车、电铁、新能源等行业;有源滤波器因无法解决的硬件问题,在大容量场合无法使用,适用于电信、医院等用电功率较小且谐波频率较高的单位,优于无源滤波。主要发展情况

由于无源滤波的具有大容量低价位的优点,钢铁行业的滤波都采用无源滤波,目前国内滤波市场(电力谐波治理市场)上主要以无源滤波为主。国际上以ABB、诺基亚、施耐德、西门子为代表,国内以温州清华电子、山大华天、哈工大、西安赛博、绿波杰能为代表。发展形势以快速反映,谐波治理彻底,综合控制为主。

2.贴片电容的封装

电容:可分为无极性和有极性两类,无极性电容下述两类封装最为常见,即0805、0603;而有极性电容也就是我们平时所称的电解电容,一般我们平时用的最多的为铝电解电容,由于其电解质为铝,所以其温度稳定性以及精度都不是很高,而贴片元件由于其紧贴电路版,所以要求温度稳定性要高,所以贴片电容以钽电容为多,根据其耐压不同,贴片电容又可分为A、B、C、D四个系列,具体分类如下:

类型封装形式耐压

A321610V

B352816V

C603225V

D734335V

贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容的系列型号有0402、0603、0805、1206、1812、2010、2225、2512,是英寸表示法,04表示长度是0.04英寸,02表示宽度0.02英寸,其他类同

型号尺寸(mm)

英制尺寸公制尺寸长度及公差宽度及公差厚度及公差

040210051.00±0.050.50±0.050.50±0.05

060316081.60±0.100.80±0.100.80±0.10

080520122.00±0.201.25±0.200.70±0.20

1.00±0.20

1.25±0.20

120632163.20±0.301.60±0.200.70±0.20

1.00±0.20

1.25±0.20

121032253.20±0.302.50±0.301.25±0.30

1.50±0.30

180845204.50±0.402.00±0.20≤2.00

181245324.50±0.403.20±0.30≤2.50

222557635.70±0.506.30±0.50≤2.50

303576907.60±0.509.00±0.05≤3.00

贴片电容的命名

贴片电容的命名:

贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求

例风华系列的贴片电容的命名

贴片电容的命名:

贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。例风华系列的贴片电容的命名:

0805CG102J500NT

0805:是指该贴片电容的尺寸套小,是用英寸来表示的08表示长度是0.08英寸、05表示宽度为0.05英寸1000mil=1英寸=25.4mm

CG:是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF以下的电容,102:是指电容容量,前面两位是有效数字、后面的2表示有多少个零102=10×102也就是=1000PF

J:是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的

500:是要求电容承受的耐压为50V同样500前面两位是有效数字,后面是指有多少个零。N:是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡

T:是指包装方式,T表示编带包装,B表示塑料盒散包装

贴片电容的颜色,常规见得多的就是比纸板箱浅一点的黄,和青灰色,这在具体的生产过程中会有产生不同差异

贴片电容上面没有印字,这是和他的制作工艺有关(贴片电容是经过高温烧结面成,所以没办法在它的表面印字),而贴片电阻是丝印而成(可以印刷标记)。

贴片电容有中高压贴片电容得普通贴片电容,系列电压有6.3V、10V、16V、25V、50V、100V、200V、500V、1000V、2000V、3000V、4000V

贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容系列的型号有0201、0402、0603、0805、1206、1210、1812、2010、2225等。贴片电容的材料常规分为三种,NPO,X7R,Y5V

NPO此种材质电性能最稳定,几乎不随温度,电压和时间的变化而变化,适用于低损耗,稳定性要求要的高频电路。容量精度在5%左右,但选用这种材质只能做容量较小的,常规100PF以下,100PF-1000PF也能生产但价格较高

X7R此种材质比NPO稳定性差,但容量做的比NPO的材料要高,容量精度在10%左右。Y5V此类介质的电容,其稳定性较差,容量偏差在20%左右,对温度电压较敏感,但这种材质能做到很高的容量,而且价格较低,适用于温度变化不大的电路中。

“钽贴片电解电容有黑色或灰色标志的一头是正极,另外一头是负极。对于铝贴片电解电容就和普通直插电解电容一样,有杠杠的那端为负极。”

在网上查到这么一句话,可算是把板子上的钽电解全部平反了!

之前在复位电路总是不正常,查来查去,是复位的钽电解极性接反了!

以往用贴片电解大都就是对付钽电解电容,隐约在意识里知道画杠的一边是接高电位,就没有太注意其极性的表示方法。给医疗组的一哥们问起来:“它不跟普通电解电容一样么?普通电解画白道子的一端是„负‟极啊?再或者它应该和贴片二极管一样吧?二极管也是画白道子的那头是„负‟极诶!”——歪着头一想也是!极性的标识方法也应该有个„统一‟的原则吧?于是在此后焊的板子里所有的钽电解都掉了个头……

终究是以有电容的地方电平被拉得特别低这一现象,标志着我对电解电容极性的表示方法完全混乱。

真服了这种„下贱‟的表示方法,同样是电解电容,钽电解虽然昂贵一点,也不能搞特殊啊!

无极性电容以0805、0603两类封装最为常见;

0805具体尺寸:2.0×1.25×0.5

1206具体尺寸:3.0×1.50×0.5

贴片电容以钽电容为多,根据其耐压不同,又可分为A、B、C、D四个系列,具体分类如下:

类型封装形式耐压

A321610V

B352816V

C603225V

D734335V

贴片钽电容的封装是分为A型(3216),B型(3528),C型(6032),D型(7343),E型(7845)。

贴片电容正负极区分

一种是常见的钽电容,为长方体形状,有“-”标记的一端为正;

另外还有一种银色的表贴电容,想来应该是铝电解。上面为圆形,下面为方形,在光驱电路板上很常见。这种电容则是有“-”标记的一端为负。

发光二极管:颜色有红、黄、绿、蓝之分,亮度分普亮、高亮、超亮三个等级,常用的封装形式有三类:0805、1206、1210

二极管:根据所承受电流的的限度,封装形式大致分为两类,小电流型(如1N4148)封装为1206,大电流型(如IN4007)暂没有具体封装形式,只能给出具体尺寸:5.5X3X0.5

电容电阻外形尺寸与封装的对应关系是:

0402=1.0x0.5

0603=1.6x0.8

0805=2.0x1.2

1206=3.2x1.6

1210=3.2x2.5

1812=4.5x3.2

2225=5.6x6.5

注:

A\B\C\D四类型的封装形式则为其具体尺寸,标注形式为LXSXH

1210具体尺寸与电解电容B类3528类型相同

0805具体尺寸:2.0X1.25X0.5

1206具体尺寸:3.0X1.50X0.5

1.电阻电容的封装形式如何选择,有没有什么原则?比如,同样是104的电容有0603、0805的封装,同样是10uF电容有3216,0805,3528等封装形式,选择哪种封装形式比较合适呢?我看到的电路里常用电阻电容封装:

电容:

0.01uF可能的封装有0603、0805

10uF的封装有3216、3528、0805

100uF的有7343

320pF封装:0603或0805

电阻:

4.7K、10k、330、33既有0603又有0805封装。

请问怎么选择这些封装?

答:

贴片的封装主要有:02011/20W04021/16W06031/10W08051/8W12061/4W

电容电阻外形尺寸与封装的对应关系是:0402=1.0x0.50603=1.6x0.80805=2.0x1.21206=3.2x1.61210=3.2x2.51812=4.5x3.22225=5.6x6.5

电容本身的大小与封装形式无关,封装与标称功率有关。它的长和宽一般是用毫米表示的。但是型号是采用的英寸的表示方法。

选择合适的封装第一要看你的PCB空间,是不是可以放下这个器件。一般来说,封装大的器件会比较便宜,小封装的器件因为加工进度要高一点,有可能会贵一点,然后封装大的电容耐压值会比封装小的同容量电容耐压值高,这些都是要根据你实际的需要来选择的,另外,小封装的元器件对贴装要求会高一点,比如SMT机器的精度。如里面的电路板,因为空间有限,工作电压低,就可以选用0402的电阻和电容,而大容量的钽电容就多为3216等等大的封装

3.耦合、滤波、旁路电容的作用

耦合电容的作用是将交流信号从前一级传到下一级。为了不使后一级的工作点不受前一级的影响,就必须在直流方面把前一级和后一级分开。同时,又能使交流信号顺利的从前一级传给后一级,电容能传递交流信号和隔断直流,使前后级的工作点互不牵连。

耦合电容的作用是将信号由前级电路传送到后级电路,同时还具有隔离直流及频率相对比较低的信号作用。实际上我们知道电容具有隔直通交的作用,也就是电容可以将交流信号完整的传到下一级电路,同时阻断直流分量的通过。

滤掉低频实际上是指电容和它之后的电路的输入阻抗构成一个低频滤波器,滤掉了低频分量,从这个角度也可以解释隔直的作用。

滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。

去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。

1.关于去耦电容蓄能作用的理解

1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。

你可以把总电源看作密云水库,我们大楼实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。

如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。而去耦电容可以弥补此不足。

这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。)

2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提

供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地

2.旁路电容和去耦电容的区别

去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。

旁路:从元件或电缆中转移出不想要的共模RF能量。这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。

我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。

在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。

电容耦合的作用是将交流信号从前一级传到下一级。当然,耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级的工作点的调整复杂,相互牵连。为了不使后一级的工作点不受前一级的影响,就必须在直流方面把前一级和后一级分开。同时,又能使交流信号顺利的从前一级传给后一级,同时能完成这一任务的方法就是采用电容传输或变压器传输来实现。它们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成份要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或强信号的传输,常用变压器作耦合元件。

4.存储器形式

1.按制造工艺分类

半导体存储器可以分为双极型和金属氧化物半导体型两类。

双极型(bipolar)由TTL晶体管逻辑电路构成。该类存储器件的工作速度快,与CPU处在同一量级,但集成度低,功耗大,价格偏高,在微机系统中常用做高速缓冲存储器cache。

金属氧化物半导体型,简称MOS型。该类存储器有多种制造工艺,如NMOS,HMOS,CMOS,CHMOS等,可用来制造多种半导体存储器件,如静态RAM、动态RAM、EPROM等。该类存储器的集成度高,功耗低,价格便宜,但速度较双极型器件慢。微机的内存主要由MOS型半导体构成。

2.按存取方式分类

半导体存储器可分为只读存储器(ROM)和随机存取存储器(RAM)两大类。ROM是一种非易失性存储器,其特点是信息一旦写入,就固定不变,掉电后,信息也不会丢失。

在使用过程中,只能读出,一般不能修改,常用于保存无须修改就可长期使用的程序和数据,如主板上的基本输入/输出系统程序BIOS、打印机中的汉字库、外部设备的驱动程序等,也可作为I/O数据缓冲存储器、堆栈等。RAM是一种易失性存储器,其特点是在使用过程中,信息可以随机写入或读出,使用灵活,但信息不能永久保存,一旦掉电,信息就会自动丢失,常用做内存,存放正在运行的程序和数据。

(1)ROM的类型

根据不同的编程写入方式,ROM分为以下几种。

①掩膜ROM

掩膜ROM存储的信息是由生产厂家根据用户的要求,在生产过程中采用掩膜工艺(即光刻图形技术)一次性直接写入的。掩膜ROM一旦制成后,其内容不能再改写,因此它只适合于存储永久性保存的程序和数据。

②PROM

PROM(programmableROM)为一次编程ROM。它的编程逻辑器件靠存储单元中熔丝的断开与接通来表示存储的信息:当熔丝被烧断时,表示信息“0”;当熔丝接通时,表示信息“1”。由于存储单元的熔丝一旦被烧断就不能恢复,因此PROM存储的信息只能写入一次,不能擦除和改写。

③EPROM

EPROM(erasableprogrammableROM)是一种紫外线可擦除可编程ROM。写入信息是在专用编程器上实现的,具有能多次改写的功能。EPROM芯片的上方有一个石英玻璃窗口,当需要改写时,将它放在紫外线灯光下照射约15~20分钟便可擦除信息,使所有的擦除单元恢复到初始状态“1”,又可以编程写入新的内容。由于EPROM在紫外线照射下信息易丢失,故在使用时应在玻璃窗口处用不透明的纸封严,以免信息丢失。

④EEPROM

EEPROM也称E2PROM(electricallyerasableprogrammableROM)是一种电可擦除可编程ROM。它是一种在线(或称在系统,即不用拔下来)可擦除可编程只读存储器。它能像RAM那样随机地进行改写,又能像ROM那样在掉电的情况下使所保存的信息不丢失,即E2PROM兼有RAM和ROM的双重功能特点。又因为它的改写不需要使用专用编程设备,只需在指定的引脚加上合适的电压(如+5V)即可进行在线擦除和改写,使用起来更加方便灵活。

⑤闪速存储器

闪速存储器(flashmemory),简称Flash或闪存。它与EEPROM类似,也是一种电擦写型ROM。与EEPROM的主要区别是:EEPROM是按字节擦写,速度慢;而闪存是按块擦写,速度快,一般在65~170ns之间。Flash芯片从结构上分为串行传输和并行传输两大类:串行Flash能节约空间和成本,但存储容量小,速度慢;而并行Flash存储容量大,速度快。

Flash是近年来发展非常快的一种新型半导体存储器。由于它具有在线电擦写,低功耗,大容量,擦写速度快的特点,同时,还具有与DRAM等同的低价位,低成本的优势,因此受到广大用户的青睐。目前,Flash在微机系统、寻呼机系统、嵌入式系统和智能仪器仪表等领域得到了广泛的应用。

(2)RAM的类型

①SRAM

SRAM(staticRAM)是一种静态随机存储器。它的存储电路由MOS管触发器构成,用触发器的导通和截止状态来表示信息“0”或“1”。其特点是速度快,工作稳定,且不需要刷

新电路,使用方便灵活,但由于它所用MOS管较多,致使集成度低,功耗较大,成本也高。在微机系统中,SRAM常用做小容量的高速缓冲存储器。

②DRAM

DRAM(dynamicRAM)是一种动态随机存储器。它的存储电路是利用MOS管的栅极分布电容的充放电来保存信息,充电后表示“1”,放电后表示“0”。其特点是集成度高,功耗低,价格便宜,但由于电容存在漏电现象,电容电荷会因为漏电而逐渐丢失,因此必须定时对DRAM进行充电(称为刷新)。在微机系统中,DRAM常被用做内存(即内存条)。

③NVRAM

NVRAM(nonvolatileRAM)是一种非易失性随机存储器。它的存储电路由SRAM和E2PROM共同构成,在正常运行时和SRAM的功能相同,既可以随时写入,又可以随时读出。但在掉电或电源发生故障的瞬间,它可以立即把SRAM中的信息保存到EEPROM中,使信息得到自动保护。NVRAM多用于掉电保护和保存存储系统中的重要信息。

微型计算机中半导体存储器的分类如图5.2所示。

随着集成电路技术的不断发展,半导体存储器也得到迅速发展,不断涌现出新型存储器芯片。静态RAM有同步突发SRAM(synchronousburstSRAM,SBSRAM)、管道突发SRAM(pipelinedburstSRAM,PBSRAM)等。动态RAM有快速页模式DRAM(fastpagemodeDRAM,FPMDRAM)、扩充数据输出RAM(extendeddataoutputRAM,EDORAM)、同步DRAM(synchronousDRAM,SDRAM)、Rambus公司推出的RDRAM(RambusDRAM)、Intel公司推出的DRDRAM(directRambusDRAM)等。专用存储器芯片有铁电体RAM(ferroeelectricRAM,FRAM)、双口RAM、先进先出存储器(FIFORAM)等。

5.FPGA、CPLD特点及区别

FPGA(现场可编程门阵列)与CPLD(复杂可编程逻辑器件)都是可编程逻辑器件,它们是在PAL,GAL等逻辑器件的基础之上发展起来的。同以往的PAL,GAL等相比较,FPGA/CPLD的规模比较大,它可以替代几十甚至几千块通用IC芯片。这样的FPGA/CPLD实际上就是一个子系统部件。这种芯片受到世界范围内电子工程设计人员的广泛关注和普遍欢迎。经过了十几年的发展,许多公司都开发出了多种可编程逻辑器件。

对用户而言,CPLD与FPGA的内部结构稍有不同,但用法一样,所以多数情况下,不加以区分。

FPGA/CPLD芯片都是特殊的ASIC芯片,它们除了具有ASIC的特点之外,还具有以下几个优点:

·随着VlSI(VeryLargeScaleIC,超大规模集成电路)工艺的不断提高单一芯片内部可以容纳上百万个晶体管,FPGA/CPLD芯片的规模也越来越大,其单片逻辑门数已达到上百万门,它所能实现的功能也越来越强,同时也可以实现系统集成。

·FPGA/CPLD芯片在出厂之前都做过百分之百的测试,不需要设计人员承担投片风险和费

用,设计人员只需在自己的实验室里就可以通过相关的软硬件环境来完成芯片的最终功能设计。所以,FPGA/CPLD的资金投入小,节省了许多潜在的花费。

·用户可以反复地编程、擦除、使用或者在外围电路不动的情况下用不同软件就可实现不同的功能。所以,用FPGA/PLD试制样片,能以最快的速度占领市场。FPGA/CPLD软件包中有各种输入工具和仿真工具,及版图设计工具和编程器等全线产品,电路设计人员在很短的时间内就可完成电路的输入、编译、优化、仿真,直至最后芯片的制作。当电路有少量改动时,更能显示出FPGA/CPLD的优势。电路设计人员使用FPGA/CPLD进行电路设计时,不需要具备专门的IC(集成电路)深层次的知识,FPGA/CPLD软件易学易用,可以使设计人员更能集中精力进行电路设计,快速将产品推向市场。

FPGA是现场可编程逻辑门阵列的简称,是电子设计的一个里程碑。CPLD是复杂可变成逻辑器件的简称。尽管FPGA和CPLD都是可编程ASIC器件,有很多共同特点,但由于CPLD和FPGA结构上的差异,具有各自的特点:

1)、CPLD更适合完成各种算法和组合逻辑,FPGA更适合于完成时序逻辑。换句话说,FPGA更适合于触发器丰富的结构,而CPLD更适合于触发器有限而乘积项丰富的结构。

2)、CPLD的连续式布线结构决定了它的时序延迟是均匀的和可预测的,而FPGA的分段式布线结构决定了其延迟的不可预测性。

3)、在编程上FPGA比CPLD具有更大的灵活性。CPLD通过修改具有固定内连电路的逻辑功能来编程,FPGA主要通过改变内部连线的布线来编程;FPGA可在逻辑门下编程,而CPLD是在逻辑块下编程。

4)、FPGA的集成度比CPLD高,具有更复杂的布线结构和逻辑实现。

5)、CPLD比FPGA使用起来更方便。CPLD的编程采用E2PROM或FASTFLASH技术,无需外部存储器芯片,使用简单。而FPGA的编程信息需存放在外部存储器上,使用方法复杂。

6)、CPLD的速度比FPGA快,并且具有较大的时间可预测性。这是由于FPGA是门级编程,并且CLB之间采用分布式互联,而CPLD是逻辑块级编程,并且其逻辑块之间的互联是集总式的。

7)、在编程方式上,CPLD主要是基于EEPROM或FLASH存储器编程,编程次数可达1万次,优点是系统断电时编程信息也不丢失。CPLD又可分为在编程器上编程和在系统编程两类。FPGA大部分是基于SRAM编程,编程信息在系统断电时丢失,每次上电时,需从器件外部将编程数据重新写入SRAM中。其优点是可以编程任意次,可在工作中快速编程,从而实现板级和系统级的动态配置。

8)、CPLD保密性好,FPGA保密性差。

9)、一般情况下,CPLD的功耗要比FPGA大,且集成度越高越明显。

随著复杂可编程逻辑器件(CPLD)密度的提高,数字器件设计人员在进行大型设计时,既灵活又容易,而且产品可以很快进入市场。许多设计人员已经感受到CPLD容易使用、时序可预测和速度高等优点,然而,在过去由于受到CPLD密度的限制,他们只好转向FPGA和ASIC。现在,设计人员可以体会到密度高达数十万门的CPLD所带来的好处。

CPLD结构在一个逻辑路径上采用1至16个乘积项,因而大型复杂设计的运行速度可以预测。因此,原有设计的运行可以预测,也很可靠,而且修改设计也很容易。CPLD在本质上很灵活、时序简单、路由性能极好,用户可以改变他们的设计同时保持引脚输出不变。与FPGA相比,CPLD的I/O更多,尺寸更小。

如今,通信系统使用很多标准,必须根据客户的需要配置设备以支持不同的标准。CPLD可让设备做出相应的调整以支持多种协议,并随著标准和协议的演变而改变功能。这为系统设计人员带来很大的方便,因为在标准尚未完全成熟之前他们就可以著手进行硬件设计,然后再修改代码以满足最终标准的要求。CPLD的速度和延迟特性比纯软件方案更好,它的NRE费用低於ASIC,更灵活,产品也可以更快入市。CPLD可编程方案的优点如下:●逻辑和存储器资源丰富(CYPRESSDelta39K200的RAM超过480Kb)

●带冗余路由资源的灵活时序模型

●改变引脚输出很灵活

●可以装在系统上后重新编程

●I/O数目多

●具有可保证性能的集成存储器控制逻辑

●提供单片CPLD和可编程PHY方案

由于有这些优点,设计建模成本低,可在设计过程的任一阶段添加设计或改变引脚输出,可以很快上市

CPLD的结构

CPLD是属於粗粒结构的可编程逻辑器件。它具有丰富的逻辑资源(即逻辑门与寄存器的比例高)和高度灵活的路由资源。CPLD的路由是连接在一起的,而FPGA的路由是分割开的。FPGA可能更灵活,但包括很多跳线,因此速度较CPLD慢。

CPLD以群阵列(arrayofclusters)的形式排列,由水平和垂直路由通道连接起来。这些路由通道把信号送到器件的引脚上或者传进来,并且把CPLD时序模型简单

CPLD优于其它可编程结构之处在于它具有简单且可预测的时序模型。这种简单的时序模型主要应归功于CPLD的粗粒度特性。

CPLD可在给定的时间内提供较宽的相等状态,而与路由无关。这一能力是设计成功的关键,不但可加速初始设计工作,而且可加快设计调试过程。

粗粒CPLD结构的优点

CPLD是粗粒结构,这意味著进出器件的路径经过较少的开关,相应地延迟也小。因此,与等效的FPGA相比,CPLD可工作在更高的频率,具有更好的性能。

CPLD的另一个好处是其软件编译快,因为其易于路由的结构使得布放设计任务更加容易执行。

细粒FPGA结构的优点

FPGA是细粒结构,这意味著每个单元间存在细粒延迟。如果将少量的逻辑紧密排列在一起,FPGA的速度相当快。然而,随著设计密度的增加,信号不得不通过许多开关,路由延迟也快速增加,从而削弱了整体性能。CPLD的粗粒结构却能很好地适应这一设计布局的改变。灵活的输出引脚

CPLD的粗粒结构和时序特性可预测,因此设计人员在设计流程的后期仍可以改变输出引脚,而时序仍保持不变。

很多设计人员偏爱CPLD是因为它简单易用和高速的优点。CPLD更适合逻辑密集型应用,如状态机和地址解码器逻辑等。而FPGA则更适用于CPU和DSP等寄存器密集型设计。新的CPLD封装

CPLD有多种密度和封装类型,包括单芯片自引导方案。自引导方案在单个封装600μA200MA1.25mA300mA

CPLD特别适合那些要求低功耗和低温度的电池供电应用,像手持设备。

许多设计人员都熟悉传统的PLD,并喜欢这种结构所固有的灵活性和易用性。CPLD为ASIC和FPGA设计人员提供了一种很好的替代方案,可让他们以更简单、方便易用的结构实现其设计。CPLD现已达到数十万门的密度,并可提供当今通信设计所需的高性能。大于50万门的设计仍需ASIC和FPGA,但对于小型设计,CPLD不失为一个高性价比的替代方案。

FPGA采用了逻辑单元阵列LCA(LOGICCellArray)这样一个新概念,可以说,FPGA芯片是小批量系统提高系统集成度、可靠性的最佳选择之一。

目前FPGA的品种很多,有XILINX的XC系列、TI公司的TPC系列、ALTERA公司的FIEX系列等。

FPGA是由存放在片内RAM中的程序来设置其工作状态的,因此,工作时需要对片内的RAM进行编程。用户可以根据不同的配置模式,采用不同的编程方式。

加电时,FPGA芯片将EPROM中数据读入片内编程RAM中,配置完成后,FPGA进入工作状态。掉电后,FPGA恢复成白片,内部逻辑关系消失,因此,FPGA能够反复使用。FPGA的编程无须专用的FPGA编程器,只须用通用的EPROM、PROM编程器即可。当需要修改FPGA功能时,只需换一片EPROM即可。这样,同一片FPGA,不同的编程数据,可以产生不同的电路功能。因此,FPGA的使用非常灵活。

FPGA有多种配置模式:并行主模式为一片FPGA加一片EPROM的方式;主从模式可以支持一片PROM编程多片FPGA;串行模式可以采用串行PROM编程FPGA;外设模式可以将FPGA作为微处理器的外设,由微处理器对其编程。

随着FPGA门数以及性能的提高,可以将现在的许多数字电路部分下载到FPGA上,实现硬件的软件化,包括51核,DSP核以及其他的一些数字模块,到最后一个系统板子就剩下电源、模拟电路部分,接口部分以及一块FPGA。FPGA可以说是芯片级的PCB板,在一个芯片里设计原来的电子系统的所有数字电路部分。

现在也有将ARM核嵌入到FPGA里面的,比如Altera公司的Nois核。Nois是一个软核,是有软件编写的一个32位处理器,并不是硬件上存在的处理核,该核工作频率为50HZ,现在用于许多图像处理以及其他的很多网络设备。利用锁相环技术可以将频率成倍提升,一般的ARM核是将锁相环做到芯片里面的,在变成的时候可以对某个寄存器进行设置从而达到分频和倍频的目的。

而将DSP核嵌入到FPGA里面去实现强大的计算功能是Altera公司近期推出的一系列芯片的一个优点。Altera公司的StratixII系列芯片采用内嵌的DSP核,但是其DSP核的计算速度比现在业界上最快的DSP芯片还要快几个数量级

6.锁相环电路的组成

晶体振荡器、鉴相器、压控振荡器、滤波电路

锁相坏电路是一种用来消除频率误差为目的反馈控制电路,目前市场销售的基本上都是采用这种电路来控制射频电路中的压控振荡器。使其输出准确稳定的振荡频率。如锁相坏(PLL)电路出现故障将导致本振的频率输出不准确,则导致无信号。

目前通信终端设备中对频率的稳定采用的是频率合成CSYN技术。频率合成的基本方法有三种:第一种直接频率合成;第二种锁相频率合成(PLL);第三种直接数字频率合成(DDS)。由于锁相频率合成技术在电路设计方面(简单),成本方面控制灵敏度方面,频谱纯净度方面等。都要胜于直接频率合成,与直接数字频率合成。所以被移动通信终端设备广范采用。它在电路中的作用是控制压控振荡器输出的频率,相位与基准信号的频率,相位保持同步。

锁相坏电路的构成与工作原理:

1、构成:它是由鉴相器(PD)低通滤波器(LPF)压控振荡器(VCO)三部分组成。

鉴相器:它是一个相位比较器。基准频率信号和压控振荡器输出的取样频率在其当VCO产生所须的某一高频频率。一路去混频管,另一路反馈给锁相环,中的分频器进行N次分频。在这里为什么要进行N次分频呢?首先要说明一下基准频率与VCO振荡取样频率在鉴相要满足3个条件。

①频率相同。②幅度相同。③相位不同。为了满足鉴相条件,所以在电路中设置了分频器。VCO振荡频率取样信号送入分频器完成N次分频后,得到一个与基准频率相位不同,但频率和幅度都相同的一个频。它在鉴相器。C在这里相当于,Cj与f0成反比关系。

控制过程如下:

通过上述一系列的变化达到控制压控振荡器输出精确稳定的频率。从而达到控制VCO的频率。

7.信号线上常串入电阻的作用

在KY版SKQ2501的许多CPU信号线加串了22欧姆的电阻,如图:

(图一)

44B0X信号线上加端接电阻的原因

记得上次有人提出为什么44B0X电路板上的SDRAM和44B0X之间几根信号线上串了22欧的电阻,有人提出是信号完整性(SI)的缘故,再寻根究底似乎也不甚清楚。刚才忽然想到这个事情,这里提出两个很多人可能也很好奇的问题:1,什么情况下需要这个电阻;2,阻值如何确定

经过一番查证,终于茅塞顿开。

据查,当信号频率超过50MHz时,互连关系必须以传输线考虑,于是便转入高速系统的设计的问题。此时,对互连延迟引起的时序问题以及串扰、传输线效应等信号完整性(SI)问题就必须考虑了。

当传输线线长>(源端信号的上升时间/传输线上每单位长度的带载传输延迟的两倍)时,需要使用端接匹配技术。由于源端与负载端阻抗不匹配会引起线上反射,所以我们要采用端接技术尽量抑制信号反射。关于信号反射的形成这里不做讨论,我们要研究的是如何抑制。先假设驱动源内阻R0,传输线特性阻抗为Z0,负载阻抗RL。最理想的状态当然是Z0=RL,没反射,实际不可能。端接方式分并行和串行两大类,各有优势。FS44B0X采用串接电阻的方式,通过在尽量靠近源端的位置串行插入一个电阻RS(典型10Ω到75Ω)到传输线中来实现。串行端接是匹配信号源的阻抗,所插入的串行电阻阻值加上驱动源的输出阻抗应大于等于传输线阻抗(轻微过阻尼)。串行端接的优点在于:每条线只需要一个端接电阻,无需与电源相连接,消耗功率小。

总之,这种加电阻的事情是设计高手才干得出的,大家有空可以研究一下高速系统设计,仿真一下。鉴于该板SDRAM控制信号SCLK有40M-66MHz左右,加上导线又长,所以这个22欧的端接电阻不可缺少,其余一些控制线虽然没有如此高的频率,但加上也马马虎虎,反正不至于出问题。唯一的问题在于这个22欧的电阻似乎更应该接近44B0X而不是SDRAM。

这么说来,串接10~75欧姆的电阻是为了预防信号反射回发送数据端。故,在PCB布线上,该串接电阻位于要保护的信号发送芯片的附近。

其他例子(GX版的SKJ2405):

(pcb图里,主芯片周围的那些焊盘,大部分是47欧姆的电阻)

下图是图一的PCB布线,主芯片周围的那些焊盘,大部分是22欧姆的电阻。

两个方案中,2405几乎对所有的信号线都加串了47欧电阻,2501则只对地址线加串51欧电阻(如图二)和对控制线加串22欧电阻。这些都是基于效果与成本来考虑的。(图二)

看原理图时,经常看到串一些小电阻,如22欧姆,但是也不是一定串。同样场合有的串,有的不串。请哪位高人指点一下吧:)

如果是高速信号线上串小电阻,那就应该是终端阻抗匹配。

如果是GPIO口上串了小电阻,很可能是抗小能量电压脉冲的。

简单的例子:一个串口通讯的提示信号,当接上串口时,因为瞬间的插拔产生了一个很窄的电压脉冲,如果这个脉冲直接打到GPIO口,很可能打坏芯片,但是串了一个小电阻,很容易把能力给消耗掉。

如果脉冲是5mA5.1V,那么过了30ohm后就是5v左右了。。。。。

增加边沿时间,减少EMI

谢谢你的讲解,看来是抗窄脉冲的。

能再细解释一下。

高速信号线频率要到多少才算高速呢?

严格来讲,当高速电路中,信号在传输介质上的传输时间大于信号上升沿或者下降沿的1/4时,该传输介质就需要阻抗匹配。

一般当PCB走线的长度大于其传输信号的波长的1/10时,我们就就需要考虑阻抗匹配。100MHz以上的高速数字电路就可以考虑阻抗匹配了

主要是基于阻抗匹配方面的考虑,以达到时序统一,延迟时间,走线电容等不会超过范围!原因在于LAYOUT时可能走线方面不是很匹配!

再高速信号重经常可以看到再信号线重串小电阻,请问再LAYOUT时应该把它放在CPU端还是放在信号的终端好些呢?看到过一些centralityGPS公版方案中是放在CPU端,但也看到其他的原理图是放在信号的终端,请求理论支持!

一般的做法是在信号源端串小电阻,在信号终端并一个小电阻。

在信号源端串一个小电阻,没有公式的理论:一般传输线的特征阻抗为50欧姆左右,而TTL电路输出电阻大概为13欧姆左右,在源端串一个33欧姆的电子,13+33=46大致和50相当,这样就可以抑制从终端反射回来的信号再次反射。

在信号接收终端并一个小电阻,没有公式的理论:若信号接收端的输入阻抗很大,所以并接一个51欧姆的电阻,电阻另一端接参考地,以抑制信号终端反射。

信号接收终端串接电阻,从抑制信号反射的角度考虑,只有终端输入的电阻小于50欧姆。但IC设计时,考虑到接收能量,不会将接收端的收入电阻设计得小。

如在USB接口上,靠USBPORT端的D+和D-上串一个小电阻,如10欧姆。就是因为USBPORT端的ESD过不了

详细出处:://52rd/bbs/Archive_Thread.asp?SID=125935&TID=3

8.关于反馈概念以及举例说明作用

反馈电路在各种电子电路中都获得普遍的应用,反馈是将放大器输出信号(电压或电流)的一部分或全部,回收到放大器输入端与输入信号进行比较(相加或相减),并用比较所得的有效输入信号去控制输出,这就是放大器的反馈过程.凡是回收到放大器输入端的反馈信号起加强输入原输入信号的,使输入信号增加的称正反馈.反之则为负反馈.

反馈电路的分类

按其电路结构又分为:电流反馈电路和电压反馈电路.

正反馈电路多应用在电子振荡电路上,而负反馈电路则多应用在各种高低频放大电路上.因应用较广,负反馈对放大器性能有四种影响:

1.负反馈能提高放大器增益的稳定性.

2.负反馈能使放大器的通频带展宽.

3.负反馈能减少放大器的失真.

4.负反馈能提高放大器的信噪比.

5.负反馈对放大器的输出输入电阻有影响.

对输入电阻ri的影响:串联负反馈使输入电阻增加,并联负反馈使输入电阻减小。对输出电阻ro的影响:电压负反馈使输出电阻减小,电流负反馈使输出电阻增加。

1.开环放大器或基本放大器

图7.1是一个放大器电路,它具有单向性的特点,信号只有从输入到输出一条通路,不存在的通路,特别是没有从输出到输入的通路。这种放大器叫做开环放大器或基本放大器。

2、闭环放大器

改善基本放大器的性能,从基本放大器的输出端到输入端引入一条反向的信号通路,构成这条通路的网络叫做反馈网络,反向传输的信号叫做反馈信号。由基本放大器和反馈网络构成的放大器叫做闭环放大器或反馈放大器。所谓"反馈",通过的电路形式(反馈网络),

把放大电路输出信号的一部分或全部按的方式送回到放大电路的输入端,并影响放大电路的输入信号。这样,电路输入端的实际信号不仅有信号源直接提供的

信号,还有输出端反馈回输入端的反馈信号。

3、反馈放大器模型

9.单片机上电之后不工作,说明可能存在的原因硬件原因:

电源无输出或输出不对

若使用外部晶振,晶振没起振或已坏

单片机复位电路不对,单片机没有上电复位

单片机已损坏

软件原因:

单片机没有写入程序★★★★

程序设计漏洞,单片机死机。

10.用EDA(如protel)设计电子产品硬件的开发流程

以及各步需要注意的事项

EDA设计流程的讲解

在了解了硬件描述语言的演进过程中,相信各位对VHDL及VerilogHDL与ASICEDA工具之间的关系,应已有基本的认识。在此,让我再强调一次:在高阶设计的领域中,硬件描述语言扮演的角色,只是一种程序语言接口(PLI);它提供了一个极具弹性的设计入口(designentry),以作为电路设计者与各种计算机辅助设计工具之间沟通的桥梁。因此,若缺少了这些EDA工具,硬件描述语言的剩余价值,也只不过是一种系统规划工具,或是技术文件格式而已。

具体地说,整个数字电路的高阶设计概念,可以说就是设计自动化(designautomatize)的实现。理想的情况是:由仿真验证设计是否符合原始设定的规格(specification),以至于诸如逻辑电路的合成与实际晶体管配置与绕线(placeandroute)这一类徒手不易掌控的工作,工程师均能寻求适当的EDA工具来完成整个电路的设计。完整的自动化数字电路设计流程包含了三种主要的EDA工具:仿真器(simulator)、合成器(synthesizer)以及配置与绕线(placeandrouting,P&R)工具;除了P&R工具之外,其余两者绝大部分,均是以VHDL或VerilogHDL作为其程序语言接口。以下,笔者将配合介绍这个典型的自动化设计流程,简述各项EDA工具的基本功用。

1.系统规格制定(DefineSpecification)

在ASIC设计之初,工程师们须根据产品的应用场合,为ASIC设定一些诸如功能、操作速度、接口规格、环境温度及消耗功率等规格,以做为将来电路设计时的依据。在这方面,目前已有厂商提供系统级仿真器(system-levelsimulator),为系统设计提供不错的解决方案;透过此类仿真器,工程师们可以预估系统的执行效能,并可以最佳化的考量,决定软件模块及硬件模块该如何划分。除此之外,更可进一步规划哪些功能该整合于ASIC内,哪些功能可以设计在电路板上,以符合最大的经济效能比。

2.设计描述(DesignDescription)

一旦规格制定完成,便依据功能(function)或其它相关考量,将ASIC划分为数个模块(module);此阶段是整个设计过程中最要的关键之一,它直接影响了ASIC内部的架构及各模块间互动的讯号,更间接影响到后续电路合成的效能及未来产品的可靠性。

决定模块之后,便分交由团队的各个工程师,以VHDL或Verilog等硬件描述语言进行设计-亦即功能的行为描述(behavioraldescription);为能明确及有效率地描述模块的内部功能,各模块之下可能再细分成数个子模块(sub-module),直到能以可合成(synthesizible)的语法描述为止。这种一层层分割模块的设计技巧,便是一般所谓的阶层式设计(hierarchicaldesign);这与早期直接以绘制闸级电路进行设计的时代,所使用的技巧是相类似的。此一步骤所完成的设计描述,是进入高阶合成电路设计流程的叩门砖;习惯上,称之为硬件描述语言的设计切入点(HDLdesignentry)。关于此一步骤,亦有相关的辅助工具相继推出。DesignBook便是其中的代表;它利用一般工程师熟悉的图形接口-如状态图及流程图,协助初接触以硬件描述语言进行设计的工程师,自动编写出相对应的硬件语言描述码。效能如何笔者不敢断言,但它能依使用者决定,整合惯用之其它EDA工具的特点,倒是满吸引人

的地方。

3.功能验证(FunctionVerification)

完成步骤2的设计描述,接下来便是利用VHDL或Verilog的电路仿真器,针对先前的设计描述,验证其功能或时序(timing)是否符合由步骤1所制定的规格。通常,称这类验证为功能仿真(functionsimulation),或行为仿真(behavioralsimulation),而这类的HDL电路仿真器,则通称为行为仿真器(behavioralsimulator)。

对于这一类功能验证的仿真而言,仿真器并不会考虑实际逻辑闸或联机(connenctwires)所造成的时间延迟(timedelay)、闸延迟(gatedelay)及传递延迟(transportdelay)。取而代之的是,使用单一延迟(unitdelay)的数学模型,来粗略估测电路的逻辑行为;虽然如此无法获得精确的结果,但其所提供的信息,已足够作为工程师,针对电路功能的设计除错之用。为了能顺利完成仿真,在此,您还需要准备一分称为测试平台(testbench)的HDL描述?。在这份测试平台的描述档中,必须尽可能地细描述所有可能影响您设计功能的输入讯号组合,以便激发出错误的设计描述位于何处。幸运的话,或许在几次修改之后,就可得到您想要的结果,顺利进入下一个步骤。

4.逻辑电路合成(Logicsynthesis)

确定设计描述之功能无误之后,便可藉由合成器(synthesizer)进行电路合成。合成过程中,您必须选择适当的逻辑闸组件库(logiccelllibrary),作为合成逻辑电路时的参考依据。组件库的取得,可能直接来自于您的ASIC供货商(ASICvendor,负责协助客户设计ASIC的厂商)、购自其它组件库供货商(third-partyASIClibraryvendor),或是为了某种特殊原因,您亦可能考虑自行建立。

事实上,组件库siliconphysicallayout,在制作ASIC的光罩(mask)时会使用到它。

使用合成器有几个需要注意的事项,其一就是最佳化(optimize)的设定。根据步骤1所制定的规格,工程师可对合成器下达一连串限制条件(constrain),根据这些条件,合成器便会自动合成满足您规格要求的逻辑电路。最常见的三个限制条件(注3)有:操作速度、逻辑闸数及功率消耗。事实上,这三项限制条件之间是呈现互相矛盾的关系;也就是说:一旦您所下的限制条件太过严苛,将使电路合成的速度变得非常的慢,更甚者,有可能在花费大把时间后,仍得不到您想要的结果。

designentry硬件语言设计描述文件,其语法的编写风格(HDLcodingstyle),亦是决定合成器执行效能的另一个因素。事实上,无论是对VHDL或是Verilog而言,合成器所支持的HDL语法均是有限的;过于抽象的语法只适用于编写celllibrary,或是做为系统规划评估时的仿真模型所用,而不为合成器所接受。

此外,由于一般合成器的最佳化算法则,都只能达到区域性最佳化(localoptima);因此,对于过分刁钻的语法描述,将影响合成器在最佳化过程的执行时间。

5.逻辑门层次的电路功能验证(Gate-LevelNetlistVerification)

由合成器产生的netlist,会在这个阶段进行第二次的电路仿真;一般称之为逻辑闸层次的电路功能验证,或称为P&R前的仿真,简称前段仿真(pre-simulation)。在此阶段,主要的工作是要确认,经由合成器所合成的电路,是否如同原始的设计描述般,符合您的功能需求;

利用逻辑闸层次仿真器(gate-levelsimulator),配合在功能验证时已经建立的testbench,便可达到这个目的。

这里出现两个新的名词:VITAL(VHDLInitiativeTowardASICLibrary)、library及Veriloglibrary;两者均可视为先前所提及的celllibrary当中的timingmodel。在pre-simulation中,一般只考虑闸延迟,而联机延迟在此处是不予考虑的(通常在电路合成阶段,是无法预测实际联机的长度,因此也就无法推测联机所造成的延迟)。

时序变异(timingvariation)是此处经常出现的发生错误,这当中包括了,设定时间(set-uptime)或保持时间(holdingtime)的不符合,以及脉冲干扰(glitch)现象的发生。而这些时序变异,基本上都是只是单纯考虑闸延迟时所造成的结果。

6.配置与绕线(PlaceandRouting)

这里包含了三项主要的工作:平面规划(floorplanning)、配置(placement)及绕线(routing)。还记得在设计描述的步骤,您已将ASIC划分成数个模块了吗?floorplanning的工作便是,适当地规划这些划分好模块在芯片上的位置。

比起模块麻烦还没有完,由于需要参考的参数非常的多,仿真时间将花费您数倍于先前的仿真。经由P&R工具所产生的标准延迟格式(StandardDelayFormat,SDF)档,提供了详实的物理层次的延迟参数;透过VITAL的参数回传机制(back-annotation),仿真器能够精确的预估数字电路的电气行为,并且指示出发生时序错误的时间点,而您所须付出的代价就是“时间”。最后,非常幸运的您完成了这项验证工作,便可以sign-off,等着您的ASICvendor交货了。整个设计流程在此只能算是大概介绍完毕;这当中牵涉到许多未提及的层面,其中包括了时脉(clocktree)、测试设计(DesignforTest)、功能一致性验证(functionequivalencecheck)、以及静态仿真(staticsimulation)等等。

结论

假使设计硬件电路能像写软件这样方便,那该是多么美好的景象;硬件描述语言的高阶合成电路设计,为我们打开了这扇窗。事实上,VHDL及VerilogHDL并非唯一的硬件描述语言,基于相似的目的,早期也发展出其它如ABEL及AHDL等硬件语言,但是由于支持的厂商不多,因此目前不如前者来得普遍。最近,VHDL及VerilogHDL的发展协会,为提供更一般化的电路描述,已制定了能够同时描述数字及模拟混合电路的描述语法(注4),相信支持其语法的相关EDA工具,应该能在近期面市。

为能迎接系统芯片(SystemonOneChip,SoC)以及智产权(IntellectualProperty,IP)的时代来临,各EDA工具的供货商无不卯足全力,企图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论