2022年湖南省益阳市普通高校对口单招数学自考真题(含答案)_第1页
2022年湖南省益阳市普通高校对口单招数学自考真题(含答案)_第2页
2022年湖南省益阳市普通高校对口单招数学自考真题(含答案)_第3页
2022年湖南省益阳市普通高校对口单招数学自考真题(含答案)_第4页
2022年湖南省益阳市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年湖南省益阳市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.若不等式|ax+2|<6的解集为(-1,2),则实数a等于()A.8B.2C.-4D.-8

2.已知a<0,0<b<1,则下列结论正确的是()A.a>ab

B.a>ab2

C.ab<ab2

D.ab>ab2

3.实数4与16的等比中项为A.-8

B.C.8

4.A.(5,10)B.(-5,-10)C.(10,5)D.(-10,-5)

5.已知互为反函数,则k和b的值分别是()A.2,

B.2,

C.-2,

D.-2,

6.在空间中垂直于同一条直线的两条直线一定是()A.平行B.相交C.异面D.前三种情况都有可能

7.A.2B.1C.1/2

8.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3

B.-3/4

C.

D.2

9.顶点坐标为(-2,-3),焦点为F(-4,3)的抛物线方程是()A.(y-3)2=-4(x+2)

B.(y+3)2=4(x+2)

C.(y-3)2=-8(x+2)

D.(y+3)2=-8(x+2)

10.焦点在y轴的负半轴上且焦点到准线的距离是2的抛物线的标准方程是()A.y2=-2x

B.x2=-2y

C.y2=-4x

D.x2=-4y

11.若logmn=-1,则m+3n的最小值是()A.

B.

C.2

D.5/2

12.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n

13.从200个零件中抽测了其中40个零件的长度,下列说法正确的是()A.总体是200个零件B.个体是每一个零件C.样本是40个零件D.总体是200个零件的长度

14.不等式4-x2<0的解集为()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)

15.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4

16.三角函数y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π

17.已知拋物线方程为y2=8x,则它的焦点到准线的距离是()A.8B.4C.2D.6

18.A.B.(2,-1)

C.D.

19.己知向量a

=(2,1),b

=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对

20.下列命题中,假命题的是()A.a=0且b=0是AB=0的充分条件

B.a=0或b=0是AB=0的充分条件

C.a=0且b=0是AB=0的必要条件

D.a=0或b=0是AB=0的必要条件

二、填空题(10题)21.要使的定义域为一切实数,则k的取值范围_____.

22.

23.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.

24.算式的值是_____.

25.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.

26.

27.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.

28.直线经过点(-1,3),其倾斜角为135°,则直线l的方程为_____.

29.

30.

三、计算题(10题)31.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

32.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

34.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

35.解不等式4<|1-3x|<7

36.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

38.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

39.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

40.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、简答题(10题)41.证明上是增函数

42.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

43.已知cos=,,求cos的值.

44.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由

45.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值

46.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

47.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

48.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

49.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

50.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

五、解答题(10题)51.设椭圆x2/a2+y2/b2的方程为点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|直线OM的斜率为.(1)求E的离心率e(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MN丄AB

52.已知椭圆的中心为原点,焦点在x轴上,离心率为,且经过点M(4,1),直线l:y=x+m交椭圆于异于M的不同两点A,B直线MA,MB与x轴分别交于点E,F.(1)求椭圆的标准方程;(2)求m的取值范围.

53.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,在C上;(1)求C的方程;(2)直线L不过原点O且不平行于坐标轴,L与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线L的斜率的乘积为定值.

54.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.

55.

56.

57.

58.

59.

60.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD。

六、证明题(2题)61.△ABC的三边分别为a,b,c,为且,求证∠C=

62.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

参考答案

1.C

2.C命题的真假判断与应用.由题意得ab-ab2=ab(1-b)<0,所以ab<ab2

3.B

4.B

5.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.

6.D

7.B

8.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.

9.C四个选项中,只有C的顶点坐标为(-2,3),焦点为(-4,3)。

10.D

11.B对数性质及基本不等式求最值.由㏒mn=-1,得m-1==n,则mn=1.由于m>0,n>0,∴m+3n≥2.

12.C直线与平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因为n⊥β,所以n⊥L.

13.D总体,样本,个体,容量的概念.总体是200个零件的长度,个体是每一零件的长度,样本是40个零件的长度,样本容量是40.

14.D不等式的计算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.

15.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,

16.A

17.B抛物线方程为y2=2px=2*4x,焦点坐标为(p/2,0)=(2,0),准线方程为x=-p/2=-2,则焦点到准线的距离为p/2-(-p/2)=p=4。

18.A

19.C

20.C

21.-1≤k<3

22.33

23.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.

24.11,因为,所以值为11。

25.5或,

26.-1/16

27.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.

28.x+y-2=0

29.π/3

30.45

31.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

32.

33.

34.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

35.

36.

37.

38.

39.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

40.

41.证明:任取且x1<x2∴即∴在是增函数

42.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

43.

44.(1)(2)∴又∴函数是偶函数

45.

46.

47.

48.

49.x-7y+19=0或7x+y-17=0

50.

51.

52.(1)设椭圆的方程为x2/a2+y2/b2=1因为e=,所以a2=4b2,又因为椭圆过点M(4,1),所以16/a2+1/b2=1,解得b2=5,a2=20,故椭圆标准方x2/20+y2/5=1(2)将y=m+x:代入x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论