2022-2023学年高二数学上学期期中期末高效复习课3第三章圆锥曲线的方程新(定义文化)高观点必刷必过题Word版_第1页
2022-2023学年高二数学上学期期中期末高效复习课3第三章圆锥曲线的方程新(定义文化)高观点必刷必过题Word版_第2页
2022-2023学年高二数学上学期期中期末高效复习课3第三章圆锥曲线的方程新(定义文化)高观点必刷必过题Word版_第3页
2022-2023学年高二数学上学期期中期末高效复习课3第三章圆锥曲线的方程新(定义文化)高观点必刷必过题Word版_第4页
2022-2023学年高二数学上学期期中期末高效复习课3第三章圆锥曲线的方程新(定义文化)高观点必刷必过题Word版_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3第三章圆锥曲线的方程新(定义,文化)高观点必刷必过题1.(2022·全国·高二课时练习)2021年2月10日,天问一号探测器顺利进入火星的椭圆环火轨道(将火星近似看成一个球体,球心为椭圆的一个焦点).2月15日17时,天问一号探测器成功实施捕获轨道远火点(椭圆轨迹上距离火星表面最远的一点)平面机动,同时将近火点高度调整至约265km.若此时远火点距离约为11945km,火星半径约为3395km,则调整后天问一号的运行轨迹(环火轨道曲线)的焦距约为()A.11680km B.5840km C.19000km D.9500km2.(2022·全国·高二课时练习)图1是明朝的一个葡萄纹椭圆盘,图2是清朝的一个青花山水楼阁纹饰椭圆盘,图3是北宋的一个汝窑椭圆盘.已知图1,2,3中椭圆的短轴长与长轴长的比值分别为,,,设图1,2,3中椭圆的离心率分别为,,则()A. B.C. D.3.(2022·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆:的蒙日圆方程为,,分别为椭圆的左、右焦点.离心率为,为蒙日圆上一个动点,过点作椭圆的两条切线,与蒙日圆分别交于P,Q两点,若面积的最大值为36,则椭圆的长轴长为()A. B. C. D.4.(2022·福建·莆田八中高三开学考试)第24届冬季奥林匹克运动会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为,若双曲线C以为焦点、以直线为一条渐近线,则C的离心率为()A. B. C. D.5.(2022·全国·高三专题练习)阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积.当我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率与椭圆的长半轴长与短半轴长的乘积,已知椭圆的面积为,两个焦点分别为,点P为椭圆C的上顶点.直线与椭圆C交于A,B两点,若的斜率之积为,则椭圆C的长轴长为()A.3 B.6 C. D.6.(2022·北京·景山学校模拟预测)如图,唐金筐宝钿团花纹金杯出土于西安,这件金杯整体造型具有玲珑剔透之美,充分体现唐代金银器制作的高超技艺,是唐代金银细工的典范之作.该杯主体部分的轴截面可以近似看作双曲线的一部分,若的中心在原点,焦点在轴上,离心率,且点在双曲线上,则双曲线的标准方程为()A. B.C. D.7.(2022·全国·模拟预测)北京冬奥会火种台(图1)以“承天载物”为设计理念,创意灵感来自中国传统青铜礼器——尊的曲线造型,基座沉稳,象征“地载万物”,顶部舒展开阔,寓意迎接纯洁的奥林匹克火种.如图2,一种尊的外形近似为双曲线的一部分绕着虚轴旋转所成的曲面,尊高50cm,上口直径为,底座直径为25cm,最小直径为20cm,则这种尊的轴截面的边界所在双曲线的离心率为()A.2 B.C. D.8.(2022·全国·高三专题练习(文))阿基米德不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的焦点在x轴上,且椭圆C的离心率为,面积为.则椭圆C的标准方程为()A. B.C. D.9.(2022·全国·高三专题练习)数学与建筑的结合造就建筑艺术品,如吉林大学的校门是一抛物线形水泥建筑物,如图.若将该大学的校门轮廓(忽略水泥建筑的厚度)近似看成抛物线的一部分,且点在该抛物线上,则该抛物线的焦点坐标是()A. B.(0,-1) C. D.10.(2022·全国·高三专题练习)凉山美酒惹人醉,凉山的酒杯更是让人爱不释手,如图为彝族漆器,杯身曲线内收,玲珑娇美,巧夺天工,是彝族酒器的典范之作.该杯的主体部分可以近似看作是双曲线的右支与直线,,围成的曲边四边形ABMN绕y轴旋转一周得到的几何体,若该酒杯主体部分的上口外半径BM为,下底外半径AN为,则双曲线C的离心率为()A.2 B. C. D.11.(2022·四川广元·高二期末(理))三等分角是“古希腊三大几何问题”之一,数学家帕普斯巧妙地利用圆弧和双曲线解决了这个问题.如图,在圆D中,为其一条弦,,C,O是弦的两个三等分点,以A为左焦点,B,C为顶点作双曲线T.设双曲线T与弧的交点为E,则.若T的方程为,则圆D的半径为()A. B.1 C.2 D.12.(2022·全国·高三专题练习)矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线的焦点为,则这次爆破时,矿石落点的最远处到点的距离为()A. B.2 C. D.13.(多选)(2022·全国·高二单元测试)泰戈尔说过一句话:世界上最远的距离,不是树枝无法相依,而是相互瞭望的星星,却没有交汇的轨迹;世界上最远的距离,不是星星之间的轨迹,而是纵然轨迹交汇,却在转瞬间无处寻觅.已知点,直线l:,若某直线上存在点P,使得点P到点M的距离比到直线l的距离小1,则称该直线为“最远距离直线”,则()A.点P的轨迹是一条线段B.点P的轨迹与直线:是没有交汇的轨迹(即两个轨迹没有交点)C.不是“最远距离直线”D.是“最远距离直线”14.(多选)(2022·全国·高三专题练习)阿基米德是古希腊伟大的物理学家、数学家、天文学家,享有“数学之神”的称号.若抛物线上任意两点A,B处的切线交于点P,则称为“阿基米德三角形”.已知抛物线的焦点为F,过抛物线上两点A,B的直线的方程为,弦的中点为C,则关于“阿基米德三角形”,下列结论正确的是()A.点 B.轴 C. D.15.(多选)(2022·海南·模拟预测)黄金比例被公认为是最具美感的比例,其值为.已知椭圆的离心率,设坐标原点为,椭圆的右焦点为,左顶点为A,下顶点为,过点且垂直于轴的直线交椭圆于点和,则()A. B. C. D.16.(多选)(2022·江苏·高二专题练习)第24届冬季奥林匹克运动会圆满结束.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若椭圆:和椭圆:的离心率相同,且.则下列正确的是()A.B.C.如果两个椭圆,分别是同一个矩形(此矩形的两组对边分别与两坐标轴平行)的内切椭圆(即矩形的四条边与椭圆均有且仅有一个交点)和外接椭圆,则D.由外层椭圆的左顶点向内层椭圆分别作两条切线(与椭圆有且仅有一个交点的直线叫椭圆的切线)与交于两点,的右顶点为,若直线与的斜率之积为,则椭圆的离心率为.17.(多选)(2022·湖北省鄂州高中高三期末)中国结是一种手工编织工艺品,因为其外观对称精致,可以代表汉族悠久的历史,符合中国传统装饰的习俗和审美观念,故命名为中国结.中国结的意义在于它所显示的情致与智慧正是汉族古老文明中的一个侧面,也是数学奥秘的游戏呈现.它有着复杂曼妙的曲线,却可以还原成最单纯的二维线条.其中的八字结对应着数学曲线中的双纽线.曲线:是双纽线,则下列结论正确的是()A.曲线的图象关于原点对称B.曲线经过5个整点(横、纵坐标均为整数的点)C.曲线上任意一点到坐标原点的距离都不超过3D.若直线与曲线只有一个交点,则实数的取值范围为18.(2022·全国·高二课时练习)如图,某建筑物白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座建筑以轻盈、极简和雕塑般的气质.若将该建筑外形弧线的一段按照一定的比例压缩后可近似看成双曲线下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为______.19.(2022·海南中学高三阶段练习)古希腊数学家阿波罗尼奥斯在研究圆锥曲线时发现了它们的光学性质.比如椭圆,他发现如果把椭圆焦点F一侧做成镜面,并在F处放置光源,那么经过椭圆镜面反射的光线全部都会经过另一个焦点.设椭圆方程为其左、右焦点,若从右焦点发出的光线经椭圆上的点A和点B反射后,满足,则该椭圆的离心率为_________.20.(2022·全国·高二课时练习)青花瓷,中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一.如图是一个落地青花瓷,其外形称为单叶双曲面,且它的外形左右对称,可以看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶横截面圆的最小直径为16,上瓶口圆的直径为20,上瓶口圆与最小圆圆心间的距离为12,则该双曲线的离心率为___________.21.(2022·河南·平顶山市教育局教育教学研究室高二开学考试(文))如图1所示,拋物面天线是指由抛物面(抛物线绕其对称轴旋转形成的曲面)反射器和位于焦点上的照射器(馈源,通常采用喇叭天线)组成的单反射面型天线,广泛应用于微波和卫星通讯等领域,具有结构简单、方向性强、工作频带宽等特点.图2是图1的轴截面,A,B两点关于抛物线的对称轴对称,F是抛物线的焦点,是馈源的方向角,记为,焦点F到顶点的距离f与口径d的比值称为抛物面天线的焦径比,它直接影响天线的效率与信噪比等.如果某抛物面天线馈源的方向角,则其焦径比为______.22.(2022·全国·高三专题练习)美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为45°的直角梯形(如图所示),则该椭圆的离心率为_____.23.(2022·湖北·荆门市龙泉中学二模)历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年-325年),大约100年后,阿波罗尼斯更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质:如图甲,从椭圆的一个焦点出发的光线或声波,经椭圆反射后,反射光线经过椭圆的另一个焦点,其中法线表示与椭圆C的切线垂直且过相应切点的直线,如图乙,椭圆C的中心在坐标原点,焦点为,由发出的光经椭圆两次反射后回到经过的路程为.利用椭圆的光学性质解决以下问题:(1)椭圆C的离心率为__________.(2)点P是椭圆C上除顶点外的任意一点,椭圆在点P处的切线为在l上的射影H在圆上,则椭圆C的方程为__________.24.(2022·全国·高三专题练习)希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,,,点是满足的阿氏圆上的任一点,则该阿氏圆的方程为____;若点为抛物线上的动点,在轴上的射影为,则的最小值为______.25.(2022·浙江·高三开学考试)公元前3世纪,阿波罗尼奥斯在《圆锥曲线论》中明确给出了椭圆和圆的一个基本性质:如图,过椭圆(或圆)上任意一点P(不同于A,B)作长轴(或直径)AB的一条垂线段,垂足为,则为常数.若此图形为圆,则________

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论