轴流压缩机首级叶片疲劳断裂的原因分析_第1页
轴流压缩机首级叶片疲劳断裂的原因分析_第2页
轴流压缩机首级叶片疲劳断裂的原因分析_第3页
轴流压缩机首级叶片疲劳断裂的原因分析_第4页
轴流压缩机首级叶片疲劳断裂的原因分析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE1轴流压缩机首级叶片疲劳断裂的原因分析中石化股份公司茂名分公司摘要:从轴流压缩机叶片设计、操作、环境腐蚀、进口过滤器缺陷、维修维护等方面分析了首级动叶片疲劳断裂的原因。关键词:轴流式压缩机叶片断裂中图分类号:TH453文献标识码:B文章编号:1006-8155(2021)-0062-07TheCauseAnalysisofFatiguefortheFirstStageBladeofAxial-flowCompressorAbstract:Inthedesign、operation、environmentcorrosion、defectofinletfilter、mendingmaintainforcompressorblade,analyzethecauseoffatigueforfirststageblade.Keywords:Axial-flowcompressorBladeFracture0引言某炼油厂催化裂化装置的AG060/14L5型轴流—离心复合式压缩机由德国曼透平公司设计制造,共有14级轴流叶片和一级离心末级叶轮。这种配置可以获得高压比,而压缩机尺寸不至于过大,缩短了轴向长度,虽然离心叶轮比轴流叶片的效率低,但它不需要轴向出口扩压器,因此,仍可获得与纯轴流级大致相等的效率,整机效率为86.5%~88%。此外,由于离心级的性能曲线较平坦,能适应更小的流量,故可改善高压段的喘振性能。轴流部分的第1、2级为等外径叶轮,其反动度均为80%~85%。以后各级为等内径叶轮,其反动度均为100%。前两级反动度小,轴向速度大,可使叶片不会过长,后级反动度大,可使末级叶片不至于过短。这样可获得较为平坦的性能曲线。动叶采用哥廷根研制的叶型,叶片用锻件毛坯靠模铣制而成,在转轴上用牛头刨刨出矩形斜槽(与轴线成一倾斜角),把具有矩形叶根的叶片装入斜槽后,注入低熔合金或耐高温树脂,将各级动叶暂固定在正确的安装位置上,并在叶根两侧位置与转轴一起加工出两个环形槽,然后,镶入两半固定环,使叶片固定于转轴上。该轴流压缩机同一缸内装有固定静叶和可调静叶,静叶采用锻制或轧制毛坯,静叶顶端有围带,属两端固定结构,其抗振性好。静叶轴承套用烧结青铜制成。设置了前6级的可调静叶来控制流量,调节静叶角度的内缸由液压驱动做圆周转动,各级调节静叶上的调节连杆长度不同,可调节的角度范围也不同。为避免启动压缩机时进入旋转脱离区工作(压缩机旋转脱离区见图1),使叶片因流量过小产生振动,设定了可调静叶最小角度控制。通过前6级可调静叶能调节压缩机进口流量,从静叶最小角度48时的流量85000m/h到最大角度(小于0)时的流量149833m/h。正常流量122591m/h时的静叶角度约为2。_________________________收稿日期:_________________________收稿日期:2021-12-27茂名市252021图1防喘振放空曲线图该轴流压缩机动叶片属长叶片,叶根厚度相对较薄。其优点是压缩机体积小,流量大,效率高。缺点是动叶振动时,叶根弯曲应力较大。压缩机操作参数见表1。表1压缩机操作参数型号AG060/14L5介质空气进口压力(绝)/MPa0.0961进口温度/C30.7功率/kW8240出口压力(绝)/MPa0.4出口温度/C198.5湿度/%82转速/(r/min)5703最小流量/(m/h)85000正常流量/(m/h)122591最大流量/(m/h)1498331轴流压缩机首级动叶片设计的基本特点轴流压缩机动叶分为静止频率和转动频率。动叶出厂前,每片动叶都要进行测定1阶静频,一般高阶静频不要求测试。首级动叶1阶静频测试见表2。表2首级动叶1阶静频叶片编号123456789101阶静频/Hz246248246246244248244246245244叶片编号111213141516171819—1阶静频/Hz245245248246246244246243243—最小频率/Hz243最大频率/Hz248而每片动叶的转动频率难于测定,一般只能通过计算得到。首级动叶动频和静频计算结果见表3。表3首级动叶片各阶频率(Hz)的计算结果工作转速/(r/min)叶片固定在转轴上的约束状态振动阶次12340刚性固定240859.61060.317285703刚性固定308.1910.81093.81757.62压缩机首级动叶片断裂情况该压缩机组自1990年1月8日投用以来,首级叶片曾发生过3次断裂。1#转子在连续运行了24720h后,于1992年11月9日发生了第一次首级叶片断裂。1#转子更换了有防腐耐磨层的第1级进口叶片后,又连续运行了5200h,于1994年1月4日又发生了第二次首级叶片断裂。1#转子换上有防腐耐磨层的国产叶片后运行了4488h,于2021年3月26日又发生第3次首级动叶片断裂。压缩机转子运行情况见表4。表4压缩机转子运行情况转子编号转子开始使用日期转子运行时间/h转子叶片断裂或暂时停用日期处理措施1#1990.1.8~1992.11.9247201992.11.9(首级叶片断裂)更换第1级动叶1#1992.11.19~1994.1.452001994.1.4(首级叶片断裂)切掉第1级动叶1#1994.1.19~1994.12.4—1994.11.26(暂时停用)更换1~14级动叶2#1994.12.8~2021.5.24310562021.5.24(暂时停用)—1#2021.5.28~2021.3.2644882021.3.26(首级叶片断裂)更换第1、2级动叶2#2021.3.26~2021.7.5301682021.7.5(暂时停用)更换第1、2级动叶1#2021.7.8~2021.12.28216002021.12.28(暂时停用)更换第1、2级动叶2#2021.1.28—预计2021年3月大修时更换—3压缩机首级动叶断裂的断口检查从表4看出,压缩机一共发生了3次的首级动叶断裂。从3次首级叶片断口来看,断口状况基本相同。特点都是从叶片根部断裂,从叶片的断口表面来看,叶片折断从叶背到叶面断裂转变区是从叶背开始,恰好是从叶背根部靠近中心点开始(见图2)。然后断口从叶背中心点向叶面一侧像水波纹一样扩展,形成羽毛状断层,断层线一共有15~20条,从断层表面一直延伸到叶片正面,断层表面光滑,是典型的疲劳裂纹。最后折断口横截面积只留有10%的残余折断面积,表明当时压缩机在较低负荷下运行。图2首级叶片3次断裂口从图3和图4的叶片折断口中也看出,折断区有微裂纹、融合、耳朵状断层,表明可能反复出现了较高峰应力,达到材料的塑性变形范围。叶片断面在较低应力下扩展。断口羽毛状结构、折断口晶粒区、动叶表面和断口表面的腐蚀,说明了腐蚀坑为裂纹开始点,腐蚀促进了断层扩展。可能会反复出现类似旋转脱离或喘振的现象,而使叶片裂纹在交变应力的作用下不断扩展从而导致断裂。图3折断区有微裂纹图4融合、耳朵状断层4压缩机首级动叶片疲劳断裂原因分析4.1压缩机长期在最小流量下运转导致首级动叶片疲劳断裂根据西安交通大学对该轴流压缩机的流动计算和研究表明:压缩机在最小、正常和最大流量下运行时,相对地存在3种流动情况。(1)当压缩机在最小流量85000m/h运行时,下一级动静叶的流动状况最为恶劣,在静叶中分离充斥整个流道,在一级动叶叶顶附近也出现分离逆流现象。所以压缩机在最小流量下工作时的压比和效率都下降,分别下降1.13251和76.5%,尤其效率下降最大。(2)当压缩机在正常流量122591m/h(设计点流量)下运转时,叶道内部流动明显改善,尤其是减少了叶根处的流动分离,叶中和叶顶基本没有分离,流动情况改善的直接结果就是效率的提高,冲角接近最佳值。这时压缩机压比和效率达到最大,压比和效率分别达到1.1347和86.5%。(3)当压缩机在最大流量149833m/h时,流动状况也不太稳定,出现了较强烈分离;叶根附近叶片上压力面的分离比较严重,尤其是在静叶上的分离最为明显,分离区基本上集中在压力面上,吸力面分离不明显,前导叶尾部也有明显的分离。这时压缩机压比和效率降低不多,压比和效率下降1.1347和85.5%。所以当流量偏离设计点,减小或者增大时,流动损失增加,尤其是当流量控制在最小时最为明显。当流量减小时,在首级动叶的顶部最先出现逆流;当流量更小时,叶片进口的漩涡区继续扩大,此时,叶片间流道内气体的离心力不能与径向压力保持平衡,气体不再沿轴线方向流动,从而发生倾斜流动,产生了气流分离。这就发生了旋转脱离,即旋转失速现象。如果旋转失速时气体激振力的频率或倍频与叶片的固有动频相吻合,则会造成动叶片振动。该压缩机虽然使用前6级静叶可调来调节流量,但转动静叶减小或增大流量时,只能保证首级动叶叶高中间截面的气流方向与动叶安装角度相同。而不能保证首级动叶叶高其它截面的气流方向与动叶安装角度相同,故压缩机长期在最小流量工作时,会产生不太严重的气体旋转脱离现象。从操作方面对压缩机首级动叶断裂影响考虑,其影响因素有两个方面。(1)因催化裂化装置在1990~2021年炼油量较小,压缩机的静叶可调长期控制在最小位置的小流量(8500m/h)下工作,即长期在气流稳定区和严重气流旋转脱离区交界点工作,气流容易发生旋转脱离,使压缩机叶片产生振动。发生了3次首级叶片疲劳断裂。(2)压缩机进口过滤器结构落后。进风格栅通流面积太小。过滤器滤布仍采用卷帘式蓬松纤维毛毡过滤,需人工更换或转动滚筒更换,更换困难。且蓬松纤维毛毡两侧与过滤窗口贴合面缝隙太大,基本上不接合,密封效果差,空气容易走短路,过滤效率低。以致大的催化剂粉尘和颗粒可以直接进入压缩机内。对压缩机叶片直接冲刷从而造成损伤。进口过滤器进风格栅通流面积太小,约7m,流速太快,特别南方雨水多,雨水把催化剂粉尘和灰尘粘在进风格栅上,造成了严重堵塞。2021年5月,曾发生过进风格栅上粘有大量催化剂粉尘和灰尘,使压缩机流量大幅度降低,即使增大可调静叶角度仍无效。只好进行不停机紧急清理。这必然使压缩机进入旋转失速区工作,流动恶化,会引起压缩机首级叶片振动而疲劳损坏。压缩机1#转子在1994年1月4日发生的首级叶片断裂前,钳工曾进入过滤器内更换过滤纤维毛毡,导致了大块过滤纤维毛毡被吸入压缩机内;叶片断裂后,打开压缩机检查,发现压缩机首级静叶前吸着两大块过滤纤维毛毡,遮挡住进口风道,影响了吸入风量。并有小块过滤纤维毛毡进入了压缩机。根据操作记录,1993年12月19日压缩机出口流量只有76304m/h,此后到压缩机叶片断裂这段时间,压缩机出口流量也只有93646m/h。很可能是这两大块过滤纤维毛毡影响了压缩机流量。使压缩机进入了气体旋转脱离区工作。气流发生了旋转脱离,使压缩机叶片产生振动。导致首级叶片疲劳断裂。4.2压缩机首级动叶动频的倍频与气流激振力频率接近易发生振动而导致疲劳断裂叶片在运行中的气流激振力使叶片产生受迫振动。由于叶片制造的偏差和理论设计的误差及受气体流动尾迹的影响,即使首级动叶在设计点流量工作时,气体的流动方向也不可能与叶片的形状一致,气体会产生轻微漩涡和偏离流动,因而在首级动叶就会产生能量很小的气流激振力。如果首级动叶偏离设计点流量工作,流量减小或增大时,会使气流冲角与动叶进口安装角不相等,气体产生的漩涡和偏离流动更加厉害。因而在首级动叶产生的气流激振力会更大,尤其是小流量工作时更加突出,对首级动叶产生的气流激振力要比大流量工作时要大得多。气流激振力对动叶产生较大的振动,使叶片高速摆动,动叶根部为刚性固定。动叶根部一般不摆动,而叶顶摆动幅度最大,叶片越长,摆动幅度越大。振动导致首级叶片产生循环载荷结果见图5。在正常流量工作状态下,气流冲角与动叶进口安装角相等。高速旋转的动叶受到离心载荷和气流力的联合作用。这种作用是正常的,作用力的方向和大小是恒定的。只是使叶片产生弯曲变形,在叶背产生压应力,在叶面产生拉应力,但这种受力情况不会改变。即一般不认为会对动叶产生大的来回摆动。即叶片振动。在正常流量工作时产生气流激振力的能量有限,一般对动叶振动影响很小。离心载荷和气流力对叶片作用效果见图5。离离心力和气流力振动导致的循环载荷离心力最大值最小值平均值图5振动导致首级叶片产生循环载荷结果气流激振力的频率对动叶振动影响较大。当气流激振力的1阶频与动叶动频相等时,对动叶产生最大振动。当气流激振力的高阶频率与动叶动频相等时,也会对动叶产生振动,但随着气流激振力阶数的增加,对动叶产生振动能量逐渐减弱。通常,只考虑气流激振力的5阶频率以内的频率对动叶产生一定振动能量。而更高阶气流激振频率对叶片产生振动能量很小。根据该压缩机首级叶片的Campbll图得到气流激振力的频率(见表5)。表5气流激振力的频率阶数123456789101112气流激振频率/Hz10018026037546557566076086094510401120从表4和表7中看出,该压缩机偏离设计点流量操作,尤其是小流量操作时,产生的气流激振力的第10阶激振频率(945Hz)和第12阶激振频率(1120Hz)分别与首级动叶片的第2阶频率(910.8Hz)和第3阶频率(1093.8Hz)接近,存在着诱发共振的可能,是造成首级动叶疲劳断裂的原因之一。4.3压缩机首级动叶动频与转速频率的倍频接近易发生共振压缩机在正常转速5703r/min运行时工频(95.1Hz)的3倍频与动叶的1阶动频308Hz接近,避开余度不够,容易诱发共振。所以首级动叶应进行调频。压缩机升速过程中,压缩机升速台阶3700r/min时频率(61.7Hz)的5倍频与动叶的一阶动频308Hz重合,也容易诱发共振。若压缩机在此转速停留时间太长,首级动叶可能发生共振。压缩机升速台阶频率见表6。表6压缩机升速台阶频率升速台阶/(r/min)500170037005200~54005703工作频率/Hz8.328.361.786.7~9095.14.4压缩机首级叶片强度不足容易断裂根据西安交通大学对该压缩机首级动叶的计算和研究,采用流线曲率法计算的流场积分得到的叶片受力分布见表7。表7首级动叶片受到的气体切向和轴向方向的作用力分布半径/mm200.1232.9261.5287.5311.6334.1355.45375.9平均切向力/N26.1923.0621.0719.9819.4519.2119.2720.58平均轴向力/N19.0919.1919.6720.2921.0822.1123.4626.23平均合力/N32.4030.028.8228.4828.6829.2930.3633.33最大切向力/N28.4325.1722.9622.0121.8621.8522.0723.77最大轴向力/N20.7420.9521.4522.3723.725.1626.8930.3最大合力/N35.1932.7531.4231.3832.2433.3234.7938.51由表7计算得:平均切向力为168.81N;瞬时最大力为188.12N;平均轴向力为171.12N;瞬时最大力为191.56N;平均轴向力和平均切向力的合力为240.37N。显然,首级动叶片受力较大。压缩机喘振时,首级动叶摆动幅度最大达到1.024mm(沿周向)。由于偏心离心力的作用,叶片最大的应力区域位于叶片底截面的背弧侧。最大的径向应力为276.5MPa,最大的等效应力为299.5MPa。按首级叶片型线的计算,其叶片底部气流引起的弯曲应力为25MPa,通常安全系数取1.2,则实际气流弯曲应力为30MPa。如按照我国汽轮机进排气级叶片(调频叶片)许用气流弯曲应力为25~35MPa。所以认为首级动叶片的气流弯曲应力是比较大的,动叶片底部强度裕量不是很充分。显然,对比国内外其它厂家的轴流压缩机,首级动叶片薄而且细长,设计的安全裕度小,可能是造成首级动叶损坏的原因之一。要降低首级动叶片底部弯曲应力,应增加动叶片底部厚度和宽度。将叶片厚度增加,叶根部分截面积增加30%进行分析计算,调整后叶片最大的应力区域仍位于叶片根部,但应力值是有所降低,最大的等效应力为284MPa。最大的位移变形分量为0.533mm。减少16MPa。同时压缩机在正常流量时,压比从1.147下降到1.138,效率从0.8639下降到0.8498。4.5压缩机首级叶片受腐蚀介质影响损坏叶片断裂不仅与叶片的设计状态点有关,还与叶片工作所处的环境介质和实际运行工况有关。在腐蚀介质中运行的叶片表面的腐蚀物会促进疲劳裂纹的萌生和扩展,材料的疲劳强度显著降低;从压缩机首级叶片根部的断口看出,断口中出现了许多坑点。这些坑点就是腐蚀坑点。德国曼透平公司对首级叶片首次断裂断口的化学检验分析表明:对断层表面的沉积物作了化学检验分析,发现含有较高的外来杂质硫和氯;对清洗后断层表面腐蚀坑的沉积物进行化学检验分析,也发现沉积较高的外来杂质硫和氯,且腐蚀坑中钛含量要比断层表面高得多。显然叶片受到了腐蚀而出现了许多腐蚀坑,有些腐蚀坑还较深(图6和图7)。图6叶片疲劳裂纹源区腐蚀坑图7叶片断裂源区附近腐蚀坑该催化裂化装置地处南方临海,湿度较大,易发生露点腐蚀,海风携带的盐雾较多。且该催化裂化装置南边有一套污水汽提装置,有硫化氢泄漏出来。这些氯离子和硫化氢进入了压缩机,因压缩机首级叶片的空气介质温度为常温,且叶片没有喷涂防腐保护层。氯离子和硫化氢与首级叶片直接接触,发生了露点腐蚀。从1994年1月25日断裂的首级动叶片中看出(见图2),在叶背根部首先出现腐蚀坑点,由于叶背根部应力最大,应力越大,应力越集中,越容易发生应力腐蚀。在小流量或喘振引起的激振力作用下振动,使腐蚀坑点逐渐发展成为裂纹,在交变应力作用下,裂纹逐渐扩展。当裂纹扩展到一定程度,叶片根部其余未断部分不足以承受工作负荷时,最终折断。从图2叶片断口横截面积只留有10%残余折断面积可看出,当时压缩机是在较低负荷下运行折断。其余两次首级叶片断裂的情况也类似。4.6压缩机喘振造成首级叶片疲劳断裂喘振与出口管网阻力有较大关系。当出口管网压力升高,阻力增加,流量下降,进入压缩机动叶的气流冲角将增大,使叶背容易产生气流脱离。如出口管网压力继续升高,流量继续下降到一定程度,结果会在动叶中出现突变失速。流动性能大大恶化,压缩机出口压力明显下降。这时管网压力大于压缩机出口压力,气体会出现倒流,发生喘振。该压缩机的防喘振控制器虽然好用,但由于放空线与喘振线的余量只有10%,往往会出现放空阀打开和喘振同时发生的情况。说明放空阀打开仍不够及时,未能起到防喘振作用。该压缩机首级叶片1992年11月9日断裂前,压缩机出口单向阻尼阀曾发生过故障约10min,出现了出口单向阻尼阀和放空阀连续关闭—打开现象,原因是当出口单向阻尼阀关闭时,压缩机出口压力升高,在出口单向阻尼阀前后形成压差把阻尼阀打开;待出口单向阻尼阀打开后,压差消失,出口单向阻尼阀在重锤重力的作用下又关闭。同时,放空阀因压缩机出口压力升高、流量降低,工作点进入放空线而打开。待出口压力降低、流量升高后放空阀又关闭。每放空一次,伴随着一次喘振,喘振记录仪记录一次。出口单向阻尼阀和放空阀关闭—打开、压缩机喘振周而复始循环。这可能也是压缩机首级叶片1992年11月9日疲劳断裂的原因之一。从首级叶片断口金相组织的分析结果可见:机组叶片的损坏与机组发生喘振有着密切的关系,特别是停机过程中的喘振可能对叶片的事故有重要的影响。所以正常停机时,压缩机应放空后再停机。4.7静叶调节失灵和动静叶片沾有污物恶化了气体流动因压缩机运行周期长,可调静叶调节连杆的青铜轴承润滑油干枯和粉尘的侵入,致使润滑失效,长期得不到维修。1994年拆机时曾发现许多可调静叶转不动,青铜轴承已磨坏。与其它能转动的同级可调静叶转动角度不一致。此外,动静叶上沾有一层厚厚的污物,这些肯定会使气体流动恶化。会对叶片产生较大激振力引起振动,使首级叶片疲劳断裂。5结论综合上述,影响压缩机3次首级叶片疲劳断裂的因素有很多,但主要的影响因素有:(1)压缩机长期在小流量下运转;(2)叶片动频的倍频与气流激振力频率接近;(3)叶片强度不足;(4)受环境腐蚀介质影响;(5)压缩机发生喘振;(6)进口过滤器有缺陷;(7)检修维护不周全。

中国企业物流运作现状及发展战略探讨摘要:自从2001年中国加入WTO之后,市场竞争就更加激烈。每个企业为了提高自身的竞争力,努力提高物流水平,降低物流成本。本文将中国物流现状与发达的国家和地区的企业物流运作模式进行对比,提出了中国的企业物流发展战略关键词:企业物流现状;运行模式;发展战略一、中国企业物流的运作现状及弊端

物流战略是很多企业总体战略中必须考虑到的一个重要因素。为了在市场中提升自我竞争了,企业不断在降低物流成本和提高物流水平上下功夫。无论是在国内还是国际市场上,都能够最大程度上的降低成本,同时又不减低服务水平,获得竞争优势。企业物流的管理整体上来说还是处于不完善的阶段,大多停留在纸币时代。比较先进的企业已经配备了电脑,但是依旧没有形成系统的体系和网络。EDL、个人电脑、人工智能、专家系统、通信和扫描等先进的信息技术还未在物流运作中广泛地运用。但是物流是一种新型的管理技术,涉及领域宽广。因此物流管理人员要熟悉掌握企业内物流和因此延伸的整条供应链的管理知识,掌握整个工艺流程,精通物流管理技术。而我国现在十分缺乏具备综合物流知识的管理和技术人才,难以满足企业物流现代化的需求。二、中国企业物流的发展战略1990年以来,在国外,物流已经成为了该国一个重要的经济增长点。但是在中国,物流才刚刚起步。企业之间生产经营,市场运行的各个方面展开竞争。具体体现在技术、人才上包括了物流和供应链。在竞争如此激烈的背景之下,企业进入了一个微利时代,产品的成本和利润变得十分透明。而这用竞争还会不断加深,变得更加激烈,三、发展物流为当务之急

社会的经济环境在不断地发展变化之中,这就要求中小企业从战略发展的高度出发去思考物流的发展问题。在大企业实时物流战略的同时,作为灵活的反应者,中小企业在市场中,也积极采取了行动。希望通过积极的物流战略提升自身的竞争力。信息技术的发展前景大好,经济贸易的高速发展,物流业已经显示出了蓬勃的活力和蕴藏的无限商机,物流服务正逐渐成为中国企业之中最为经济合理的综合服务模式。中国进入WTO的时间还不算长,我国的中小企业应该及时把握住这一机会,在物流市场竞争比较不激烈时加入物流领域,迅速地占领一定的市场份额。但是如果中小企业不作为,等时间再长久一些,将会失去发展物流的优势。

四、从战略角度做物流

现下,我国的许多中小企业还未意识到物流战略以及控制物流成本的重要性。中小企业应当认识到物流战略是提升竞争力的重要手段,并且重视自身物流系统地建设,将物流系统的建设上升到战略高度。事实上,企业物流成本是除了原材料成本之外的最大成本项目。在国外发达国家,它们的物流成本一般控制在10%左右。而我国的现状就不太乐观。我国物流成本一般占总成本30%-40%,鲜活产品占60%左右甚至更多。我们应该看到的是系统完善的物流管理可以节省15%-30%物流成本,很大程度上减少库存和运输成本,对于中小企业来说,技术上和产品质量都比不上大企业。但不得不承认的是,中小企业产品价格更加受消费者青睐,市场需求反应更加灵活迅速。一旦中小企业将物流上升到战略高度,利用先进的物流管理模式,就可以大大的节省产品成本,进一步发挥自身的优势。想要在变幻莫测的市场中屹立不倒。谋求更加长远的发展,中小企业就要把物流放到企业经营管理的战略高度上进行思考。除了考虑要怎样解决仓储运输和商品配送这些物流的基本问题,还要思考怎样把采购、生产和销售过程中的物流活动的有机结合。做到以业务流程为基础,使得物流的一体化。最终达到加强企业的在瞬息万变的市场当中的竞争能力。

我国的中小企业只有突破地域限制、行业的局限,放眼于国内外,才能说真正意义上做好了战略制定,最大限度地把握住了机遇,有效规避风险。具体来的说,就是首先着眼于当前的地域市场的开拓,在获得了本地竞争的优势之后,辐射全国,放眼于全球。

五、重视物流系统的全面改造

发展物流并不是一蹴而就的,它需要一步步地前进。因此中小企业要注重制定详细的物流重组的长期实施计划和发展策略。物流重组需要从物流业务流程、组织机构、企业资源管理系统等方面展开,这样一来才有可能慢慢实现企业物流向供应链管理的“横向一体化”。达到降低生产、库存、运输等环节的成本,最终给客户带来更大的效益,给消费者带去更大的实惠。与此同时,企业的经营者应该打破传统的观念,不再只是局限于投入产出管理问题,如流程再造、压缩成本、加强培训以及有限资源的合理配置问题。企业的经营者应当认识到物流是企业市场营销的基础,从战略高度去思考物流运营成本与市场拓展需要、物流顾客服务的特殊要求之间的动态平衡,做到将物流系统与营销战略有机结合。现代化的物流在国际上又被称为一体化物流、供应链管理、销售链管理等等。不同于传统的物流,现代物流包括了运输、储存、装卸、搬运、包装、流通加工、配送、信息处理、回收等功能。对我国的中小企业来说,发展物流必须重视物流系统的全面改造。以物流供应链思想作为指导,注意对物流管理的强化,积极运用有效策略,全新打造物流的运作与管理体系。

六、从服务角度做物流

在国外,广泛认为物流业归属于服务业。但是现代物流在中国还是新兴产业。它的发展也就紧密伴随着企业经营管理理念而在发展。当代企业政府对物流管理的认识也逐渐提高到了企业和地区的战略理论的高度。当代企业经营管理理念的核心正在从产品制造转向产品销售再转向现代营销和客户服务。并且提出了“一切为客户创造价值”的现代经营理念。人们对于物流的认识早已经从企业自身的“功能性活动”上升为“以满足客户需求为目的”、“努力为客户创造价值,尽力增加顾客让渡价值”的“从供应到消费的运动、储存和配送的计划、执行和控制”的管理过程。消费者的需求不仅仅是商品。以企业的经营和发展的角度来看,物流就等同于服务。服务也是物流的物品之一。它是企业所提供的服务,“服务的实质上也是一种商品”,但是这一点却常常被人们所忽视。七、引进专业物流管理咨询公司中小企业自身的专业力量不足,因此要懂得借助相关的管理顾问公司以及相关研究机构来科学规划企业的物流战略、实施战略和管理体系。要去了解先进物流企业的作以及这样运作的原因所在。在这一过程之中,它们的物流服务理念是如何变化的,怎样做到满足客户需求和市场竞争,企业经营战略相衔接。这有这样,我国的中小企业才有可能成功地进入一个新的市场领域,在现有的市场基础上进一步地替身自身的服务水平,拓展市场份额。许多的企业在管理咨询方面下了许多的功夫,用以探索新管理方式和学习物流技术的运用。中小企想要全面提升企业的物流运作以及管理的水平,更加迅速地构建起一个先进的物流系统以及管理平台,就应当充分利用专业管理顾问公司的优势能力。结语:战略性的规划、投资以及技术开发是最近几年促进物流现代化发展的重要因素。企业亟需解决的不仅仅是仓促运输以及商品配送等最为基本的物流问题,最重要是为了解决怎么样才能在在变化莫测的市场竞争之中谋求生存与发展这一问题。因此企业必须做到将物流放在企业经营管理这一战略高度上去考虑怎样将采购、生产和销售则一系列过程与物流相结合。从而形成以业务流程为基础,形成物流一体化,达到增强企业市场竞争力的目的。物流已然是企业市场营销的基础。作业企业的经理,在物流决策方面应当从战略高度去考虑物流运营成本和市场拓展需要、物流顾客服务的特殊要求之间的动态平衡,仔细思考怎样才能把物流系统与营销战略以及企业的总体战略灵活结合。不再像传统上,只注重如何解决流程再造、压缩成本等投入产出的管理问题以及有限资源的合理配置问题。参考文献【1】孟祥茹

-中国企业物流运作现状及发展战略探讨\o"《山东交通学院学报》"《山东交通学院学报》

-

2013【2】刘铁钢

-

我国第三方物流的发展现状与运作模式探讨\o"《湖南经济管理干部学院学报》"《湖南经济管理干部学院学报》

-

2015【3】郑金花,余洪明

-

我国企业物流运作现状及发展战略探讨\o"《交通企业管理》"《交通企业管理》

-

2010【4】HYPERLINK"/s?wd=authoruri:(f3f9ac2bc28aeb81)%20author:(%E9%82%B5%E6%99%B4)%2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论