




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形全等判定(角边角和角角边)第一页,共21页。三角形全等的判定(ASA和AAS)第二页,共21页。1.什么样的图形是全等三角形?2.判定两个三角形全等要具备什么条件?
边边边:三边对应相等的两个三角形全等。边角边:有两边和它们夹角对应相等的两个三角形全等复习引入sssSAS第三页,共21页。
一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复原来三角形的原貌吗?怎么办?可以帮帮我吗?创设情景,实例引入第四页,共21页。
先任意画出一个△ABC,再画一个△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B(即使两角和它们的夹边对应相等)。把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?探究1BAC第五页,共21页。有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。探究反映的规律是:角边角判定定理∠A=∠D
(已知)AB=DE(已知)∠B=∠E(已知)在△ABC和△DEF中∴△ABC≌△DEF(ASA)几何语言表示ABCDEF第六页,共21页。例1:已知如图,O是AB的中点,∠A=∠B,ABCDO12∵O是AB的中点(已知)∴OA=OB(中点定义)求证:△AOC≌△BOD在△AOC和△BOD中证明:∠A=∠BOA=OB∠1=∠2(已知)(已证)(对顶角相等)∴△AOC≌△BOD(ASA)第七页,共21页。例2:已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C求证:AD=AE.BAECDO证明:在△ADC和△AEB中∠A=∠AAC=AB∠C=∠B(公共角)(已知)(已知)∴△ADC≌△AEB(ASA)∴AD=AE又∵AB=AC∴BD=CE(全等三角形的对应边相等)(已知)(等式性质1)BD=CE吗?第八页,共21页。利用“角边角”可知,带第(2)块去,可以配到一个与原来全等的三角形玻璃。(1)(2)第九页,共21页。在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?探究2ABCDEF第十页,共21页。ABCDEF已知∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A=∠D,∠B=∠E又∵∠C=180°-∠A-∠B,∠F=180°-∠D-∠E∴∠C=∠F
在△ABC和△DEF中∠B=∠EBC=EF∠C=∠F∴△ABC≌△DEF(ASA)结论两角和它们其中一角的对边对应相等的两个三角形全等.(简写为“角角边”或“AAS”)第十一页,共21页。在△ABC与△DEF中∴△ABC≌△DEF(AAS)几何语言∠A=∠D∠B=∠EBC=EFABCDEF第十二页,共21页。例2、已知如图,∠1=∠2,∠C=∠D
求证:AD=AC.1ABDC2证明:在△ABD和△ABC中∠1=∠2∠D=∠CAB=AB∴△ABD≌△ABC(AAS)∴AD=AC第十三页,共21页。变式1:已知如图,
∠1=∠2,∠ABD=∠ABC
求证:AD=AC.1ABDC2证明:在△ABD和△ABC中∠1=∠2AB=AB∠ABD=∠ABC∴△ABD≌△ABC(ASA)∴AD=AC第十四页,共21页。变式2:已知如图,∠1=∠2,∠3=∠4
求证:AD=AC.1ABDC234证明:∵∠3=∠4∴∠ABD=∠ABC在△ABD和△ABC中∠1=∠2AB=AB∠ABD=∠ABC∴△ABD≌△ABC(ASA)∴AD=AC为什么?等角的补角相等或等式性质1第十五页,共21页。练习1.如图,填什么就有△AOC≌△BOD∠A=∠B(已知)
AC=BD
(已知)
∠C=∠D(已知)∴△AOC≌△BOD(ASA
)在△AOC和△BOD中第十六页,共21页。2.如图,∠A=∠B(已知)
∠AOC=∠BOD
(对顶角相等)
CA=DB(已知)∴△ADC≌△BOD(AAS
)在△AOC和△BOD中第十七页,共21页。小测:如图,AB⊥BC,AD⊥DC,∠1=∠2。求证AB=AD。ABCD12第十八页,共21页。知识应用2.如图,要测量河两岸相对的两点A,B
的距离,可以在AB的垂线BF上取两点
C,D,使BC=CD,再定出BF的垂线
DE,使A,C,E在一条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司物流竞赛活动方案
- 2025年文化产业管理专业研究生入学考试试卷及答案
- 2025年健康促进师职业资格考试试卷及答案
- 2025年家庭教育与青少年发展考试卷及答案
- 2025年教师资格考试试卷及答案学习要点明确
- 与健康同行与心灵相约户外活动
- 训战培训总结
- 护理人员心理支持
- 两个小时的培训
- 造口病人并发症的护理
- 2024年中国中式养生水行业发展趋势洞察报告
- 烘焙专业职业生涯规划书
- (高清版)JTST 273-2024 水运工程测量定额
- 生物信息学智慧树知到期末考试答案章节答案2024年华东理工大学
- 智能护理数字化驱动医护智能管理
- 青少年毒品预防教育课件
- 【华莱士品牌SWOT探析及营销策略探究(含问卷)8700字(论文)】
- 钢管混凝土柱计算
- 应急演练评估表模板
- 垃圾渗滤液处理站运维及渗滤液处理投标方案(技术标)
- 生活垃圾焚烧系统设计
评论
0/150
提交评论