高一数学复合函数课件_第1页
高一数学复合函数课件_第2页
高一数学复合函数课件_第3页
高一数学复合函数课件_第4页
高一数学复合函数课件_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一数学复合函数课件第一页,共14页。复合函数第二页,共14页。1、复合函数的定义定义:如果y是u的函数,记为y=f(u),u又是x的函数,记为u=g(x),且g(x)的值域与f(u)的定义域的交集不空,则确定了一个y关于x的函y=f[g(x)],这时y叫x的复合函数,其中u叫中间变量,y=f(u)叫外层函数,u=g(x)叫内层函数.即:x→u→y第三页,共14页。2、复合函数的定义域若复合函数y=f[g(x)],外函数y=f(u),内函数u=g(x):(1)f(x)的定义域就是g(x)的值域.若f(x)的定义域为D,则y=f[g(x)]的定义域是使有意义的x的集合.(2)y=f[g(x)]的定义域为D,则g(x)在D上的取值范围(g(x)的值域)即为f(x)的定义域.第四页,共14页。3、复合函数的性质引理1:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。引理2:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数。第五页,共14页。引理3:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是减函数。引理4:已知函数y=f[g(x)],若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是减函数。第六页,共14页。复合函数的单调性若u=g(x)增函数减函数增函数减函数y=f(u)增函数减函数减函数增函数则y=f[g(x)]增函数增函数减函数减函数规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不相同时,其复合函数是减函数。“同增异减”第七页,共14页。例题1、求的单调区间.第八页,共14页。第九页,共14页。第十页,共1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论