版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吸湿快干剂,纺织布面料吸湿排汗剂,吸湿速干整理剂,吸湿速干剂(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)
吸湿排汗(快干)产品加工中有关问题的探讨吸湿快干剂,纺织布面料吸湿排汗剂,吸湿速干整理剂,吸湿速干剂(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)杨栋樑全国染整新技术应用推广协作网一、前言人们对服装面料的功能性和舒适性要求中,吸湿排汗(快干)性能越来越受到快节奏生活的广大消费者的青睐。即希望织物具有吸水(湿)和快干性,如何将人体散发的气、液态汗水尽快排出服装,是提高穿着舒适性的关键之一。汗液经织物传导到外界空间的通道有二种形式:一是人体皮肤上的汗水直接由织物或纤维间的缝隙(或称毛细管)扩散迁移到外层空间;二是人体散发的水蒸汽,由织物中纤维的微孔或在纤维表面凝结成水,经纤维的微孔或纤维间缝隙的毛细管作用传递到织物表面,再蒸发到外界空间[1]。由此可知其过程是:吸水——保水——蒸发。因而,无论是天然纤维或是合成纤维单独都不具备这方面的性能,以致早期的吸湿快干织物是由二种或二种以上不同纤维织成二层或三层结构的织物来担当此项任务的。自二十世纪八十年代开发吸湿排汗技术以来,情况就完全改观。传统的合成纤维,尤其是聚酯纤维的分子化学结构中缺乏亲水性基团,吸湿性很差,在服用过程中,人体散发的湿气很难通过聚酯织物传递出去,容易产生闷热不舒适感。棉纤维有亲水性基团(每个单元结构上有三个羟基),吸湿和吸水性很强,保水性也很好,但其刚性较小,尤其吸湿(水)后会粘贴在皮肤上,使人感觉不爽,以及随着棉纤维的吸湿(水)量增加而纤维的膨胀,诱发产生闷热问题。吸湿快干技术针对上述穿着时的情况,选择以合成纤维为基材,提高纤维的表面积,增强纤维的吸湿和快干的潜在能力;在纺织物理性加工中,进一步改进集合体的传导效果;在染整化学加工时,再赋以纤维表面的亲水化,最终实现吸湿快干功能。吸湿排汗纤维有聚酯,聚酰胺和聚丙烯等品种,以聚酯纤维为大宗。其中以美国杜邦公司独家研发的Coolmax为最著名,它是具有四沟槽的异形聚酯纤维,利用这些沟槽型的纤维成纱和织造后,纤维和纤维之间可形成更多的毛细管通道,更好地发挥芯吸作用(毛细管效应)产生吸湿排汗功能。在物理改性的吸湿排汗聚酯纤维中,有异形、中空、细旦和微孔化等不同的品种,其中异形为多。异形化中又有三叶、多叶(五-八叶)、三角,十字,W和Y型等断面的纤维可供设计产品选用。约四年前,作者曾写过一篇关于产品开发的文章[2],其后陆续作过些补充,今将其整理成文,再次就教于诸同好,请校正。二、理论分析织物的吸湿排汗(快干)性能,实质上是湿气和水在织物中传递问题,为此可作些理论上的探讨。(一)一般的传递模式织物的吸湿排汗性能,是(湿)气和水等物质在纺织品中传递现象。这类现象在化学工程中早就进行过系统的基础研究,并已建立了相关的理论模式。对织物而言,是其两面(内外两侧)的压力差,使(湿)汽和水等流体的移动。可简单地说,是差力差(△P)和(移动或传递)流速的关系问题。织物是纤维的一种特殊集合体形式而已,具有无数弯曲的微细管状通道,属多孔膜传递模式,流体在其间以层流传递(移动)的,为此可以Kozney—Carman方程式可由(1)式表示之:其中:U流体通过多孔体(膜)的速度△P压力损失ε空隙率r单根纤维的半径f小管道的实际长度/织物的厚度ιu流体的粘度q形状系数,传递系统提供的适当值。此外,若织物纱线间的小缝隙部分可视作单独的小园管通道的话,还可以单独小园管传递模式来描述。如小园管的当量半径为r。,那末流体的流速可由(2)式所示:对织物说来,纱线部位可以多孔体传递模式计算其流量,纱线间缝隙部分可以单独小园管模式来计算。只要不是高密织物,影响织物的流动性的主要因素就是此缝隙部分了。由此可知,织物结构的主要因素是:一是纱线的撼度系数;二是织物的覆盖系数或紧度;三是纱线的毛羽(或光洁度)等。通过的流体是空气(或湿气)和水时,会因其粘度差,而使压力产生很大的差异,但结构因素的影响,可视为相同的。(二)润湿与渗透——毛细管效应当液体(一般指水)接触织物表面时,如能润湿液体会自发地沿毛细管渗透到织物内部,即产生芯吸现象。假设织物中的毛织管为理想状态,毛细管压力(吸附力)可用Laplac方程式表示之[4-5]P=(2δLCCOSθ)/ra(3)式中:p毛细管(pa)ra毛细管当量半径(cm)θ接触角(°)δLC液体界面张力(水为71.96dyne/cm)毛细管上升高:h=(2δLCCOSθ)/gpra(4)式中:h毛细管上升高度(cm)g重力加速度(980cm/sec2)p液体密度(水为0.977g/cm3)毛细管中液体的流量通常由posinuille定律描述,流量是与沿毛细管的有效压力梯度成正比:2q=(πra/8η)(△P/L(5)式中:q流量(cm0/Sec)η液体粘滞系数(水为0.01cm/g·Sec)L吸水的毛细管长度(cm)则单位时间的线速度为υυ=dL/dt=q/πra2=(πra2/8η)△P/L=(πra2/8η)(P/L-ρg)(6)由此可推导液体在水平方向(L)和垂直方向(Ln)随时间的线速度表式L2=(raδLCCOSθ/2η)·t(7)式中t时间(sec)由上述公式可知:只有毛细管压力为正时,液体才能在毛细管内自动流动,即要求Cosθ为正值,即织物具有可湿性才是产生芯吸作用必要的前提。毛细管的有效半径越小,毛细管压力越大,芯吸高度越高;可是,液体流动速度也越小,要达到芯吸的平衡时间也越长。此外,接触角的大小也对毛细管中液体流动速度有很大影响。吸湿排汗的异形纤维与普通的园形纤维比,使液态水的传导面积增大,气态水的蒸发面积也增大。其次,异形纤维之间形成的毛细管数量也比相同纤度的园形纤维的要增加许多,且毛细管当量半径也小些。总的说,由于异形纤维束(指纱线)的毛细管数量增加,整个织物的表面积增大,致使织物对液态水的传导速度和气态水的蒸发速度都得到了明显的提高。(三)水蒸气(湿气)扩散水蒸气(水的气体分子)在纺织品中的扩散,可以在织物内部(或纱线间)缝隙部分进行,有时也可以在纤维内部进行吸收和扩散的传递方式[3]。在纱线间的扩散,可按一般扩散方程式如(9)式表示上式中Ca表示该气体分子在空气中浓度,Da表示在空气中气体分子的扩散系数。在纤维表面则因吸湿而成立如下二个平衡关系式:上式中,Df表示单根纤维内的水分子扩散系数,Cf表示单根纤维内的水分子浓度。该表面的Ca系表示对应于表面Cf的蒸汽压。若单根纤维内部会产生扩散现象则其扩散方程式如(11)式所示按理,应用上述(7)、(8)、(10a10b)和(11)式,加入平衡系统的边界条件即可求得结果。可是这种计算不仅麻烦,事实上没有这样需要。三、织物的影响吸湿排汗(快干)纺织品,除了吸湿排汗(快干)纤维本身结构性能外,其集合体状态无疑也会对其宏观效果以深远的影响。为了适应不同环境、用途和款式的服装要求,织物的质地、风格、外观、厚度和结构紧度等方面有很大变化,以致织物的组织结构,甚至纱线结构也有很大的不同的。而且,这些对吸湿排汗(快干)性能来说都是至关重要的,今简述于后。(一)不同纤维织物的干燥性能[6-7]不同纤维的18.8tex纱的针织汗布,润湿后的自然干燥性能(即残留水份)的实验结果如表1所示。表1、不同纤维织物的水份残留率表l说明:吸湿排汗纤维(Coolbst)织物自然干燥条件下30分钟能完全干燥了,而它与棉混纺的织物也基本能干燥,从一些试验资料看来,吸湿排汗短纤与其它短纤的混纺,为保证吸湿排汗功能其比例不宜低于60%。(二)成纱的撼度[6-7]50cm长的16.5tex/34f吸湿排汗聚酯长丝(Coolbst)进行不同程度的加捻后,其毛细管效应的测定结果如表2表示,由吸湿排汗短纤(Coolbst,1.56dtex×38mm)加捻成28tex纱,不同加捻程度时对纱线芯吸速率的实验测定结果,如表3所示。表表16.5tex×34f长丝以30捻/lOcm为宜,而28tex短纤纱以40捻/10cm为佳。不同纱号的吸湿排汗特性可能有些变化,但其总体规律是一致的。(三)织物的结构1、针织物针织物上应用吸湿排汗(快干)纤维时,其组织结构的影响国内已有相当研究,拟从中选择一个较能全面规律性的试验结果[8]供参考。由14.5tex(40s)、18tex(32s)和22.7tex(26s)三种棉纱,18tex(32s)莫代尔纱和8.3tex(75d/38f)Coolnise长丝为原料,编织成四种类型织物:(Ⅰ)是全部由Coo1nise长丝的双面针织物(#1和#2);(Ⅱ)是Coolnise长丝与14.5tex棉纱或18tex莫代尔交织的单面针织物(#3-#8);(Ⅲ)是由Coolnise长丝与棉纱或莫代尔纱交织的双面针织物(#8-#10);(IV)是14.5tex和18tex编成纬平针(18tex#11)和1+1罗纹针织物(14.5tex,#12);共12块织物用烧杯法测定其导湿率,从中查明其组织规格的影响,试验试样的工艺参数和测定结果如表4所示[8]。注:透湿性测定时温度为37℃(模拟人体):Coolnise为十字形聚酯由表4可知:Coolnise长丝及其交织织物试样(#1—#10)的透湿率均优于两种纯棉试样(#1l和#12),这是纯棉织物吸湿后,棉纤维膨胀堵塞了毛细管所致。全部由Coolnise长丝编织的#1和#2与棉纤维在外层Coolnise长丝为里层的#4和#5比,由于外层棉纤维的吸湿性加强了里层Coolnise长丝的导湿性,以致#4和拍导湿率优于全部是Coolnise长丝的#1和#2织物。由14.5tex棉纱和8.5texCoolnise长丝编织的珠地织物#5和#6,前者(#5)以棉纱为面纱,而后者(#6)以棉纱为地纱。结果是#5导湿率明显高于#6。#6织物的导湿性不如织物#3、#7~#10的道理也是相同的,因为#3,#7~#10织物是部分区域由吸湿纤维组成,而其它区域由吸湿纤维在外和导湿纤维在内的双纱结构组成,或导湿纤维组成的缘故。#1#2织物全部由Coolnise长丝编织成,由于#2织物表面凹凸不平的网状结构分布均匀且所占面积大,有利于湿气向大气中散发,因而#2织物的导湿率比#1织物好。#4#5织物全部是14.5tex棉纱为面纱,8.5texCoolnise长丝为里层的双层结构,但#4织物是纬平针添纱组织,织物轻薄易于导湿,以致其导湿率较#5织物好些。#7、#8织物与#9、#10织物比,两者均由两种性能不同的纱线混织而成,但#7、#8为单针筒织机编织的单面织物,较轻薄,后者为双针筒织机编织而成,较厚实,以使#7、#8织物的透湿性较好。由此,上述10种试验织物的透湿性的好坏顺序为:#4织物>#5织物>#2织物>#1织物>#7织物>#8织物>#10织物>#3织物>#6织物>#9织物。(表4)2、梭织物[9-10]由经纬纱是55.56tex和83.33tex的吸湿快干低弹网络聚酯丝,经密为64根/cm,与不同纬密(55~30根/cm,纬向紧度为58.74~32.04%),以及经密为64根/cm,与纬密为40根/cm的不同组织结构(平纹的交织频率0.50,4枚斜纹为0.25,5~16枚缎纹的交织频率分别为0.20、0.13、0.08和0.6)两组织物试样。经调湿后,参照FZ/T01071—1999《纺织品毛细效应测试方法》和JISL1907-2004C法滴水扩散试验法,分别测定两组试样的毛细管效果与水滴30秒后的扩散直径,测试数据的结果是:(1)织物密度变化的影响:在原料和组织相同的情况下,纬密变化真接影响织物的纬向紧度,测试数据经Origin软件处理后,获得经纬向的毛细管高度和水滴扩散直径与纬向紧度之间呈二次函数关系,如表5所示。表5织物紧度变化与毛细管高度和扩散直径的回归方程式注:X为纬向紧度由表5的回归方程式可知:毛细管效应和扩散性都与纬向紧度有二次函数关系。当纬向紧度于46%附近,经向毛细管高度达最大值;纬向毛细管高度最大值,出现在纬向紧度为37%附近。纬向紧度为50%附近时,扩散直径达最大值。试验表明:在经向紧度不变的前提下,纬向紧度太大(如大于55%)或太小(如低于30%)都不能很好地发挥导湿性。这是由于纬向紧度的改变,同时引起织物单位面积内的纤维根数和屈曲程度也生生的变化所致。水在织物中传递时,既需要较多的纤维间毛细管的传递动力(吸附力),也要求较少屈曲以降低传递阻力,只有两者处于合理平衡状态,织物才能发挥最佳的传递效果。(2)、组织结构变化的影响原组织的变化主要表现为经纬交织规律的变化,不同类型的原组织与导湿性之间是否存内在联系,今以各种原组织的交织频率(t)表示。交织频率是组织循环内单根经纱(或纬纱)交织规律改变次数,与经纱(或纬纱)循环数的比值。试验数据用Origin软件处理,建立了毛细管高度的扩散直径与交织频率(t)之间的回归方程式,如表6所示:表6、织物的组织结构与毛细管高度和扩散直径的回归方程式导湿率也不同,在试验范围内与经纬向毛细管高度和扩散直径都存在二次函数关系。交织频率在0.2~0.4之间(即五枚缎纹,1/4斜纹,1/3斜纹,2/2斜纹等组织)时,经纬向毛细管效应和扩散性均较好,但平纹(交织频率为0.5),8~16枚缎纹组织(交织频率为0.13~0.06),其毛细管效应和扩散性均不理想,可见组织交织频率过大或过小都不利于吸湿排汗功能。四、染整加工吸湿排汗(快干)织物(纯纺、混纺或交织)的染整加工,其前处理和染色印花等工艺流程和具体加工技术条件,基本上可参照常规聚酯及其混纺或交织物的工艺流程和工艺参数,只是由于吸湿排汗(快干)纤维的特殊异形结构形态,尤其是表面的微细沟槽或微孔应注意避免受到较大损伤,否则会影响产品的吸湿排(快干)功能。此外,染整加工的重要目的是使吸湿排汗(快干)纤维表面亲水化,使织物中的无数微细毛细管通道具有强大的吸附湿气和水份的原动力,塑造成性能优良的吸湿排汗(快干)产品,兹将有关注的问题简述于后。(一)前处理和染色[11-14]“前处理不论是冷轧堆工艺还是轧蒸高温工艺,为了防止微细沟槽受到损伤,碱液浓度,堆放时间,汽蒸温度和时间适当调整,避免聚酯分子的过份碱水解而影响纤维表面的异形结构。混纺或交织物如需丝光加工,则其烧碱浓度以200g/L左右为宜,热定形温度以180℃左右为好。染色时,由于异形聚酯纤维的表面积比常规(园形)聚酯纤维的大20~30%,使分散染料的吸附速率要快得多,应控制上染速度,和适当降低染色温度等方面,采取必要的措施。、(二)亲水化技术水与聚酯纤维表面的接触角约为80°左右,是不易润湿聚酯纤维的,可谓称为是疏水性表面,据测定聚酯纤维的临界表面张力(Y。)为43dyne/cm,而水的临界表面张力为。72.8dyne/cm;水滴不能润湿聚酯纤维的表面,当然就不可在聚酯纤维表面自由地铺展了。亲水化技术是提高聚酯纤维表面的临界表面张力,使之大于水的临界表面张力,使水滴能瞬间被聚酯纤维吸收,并自动沿织物中的毛细管通迅速扩散。而且这种表面亲水化处理技术又要具有足够的耐久性,能满足织物的服用要求才行。当前聚酯纤维表面的亲水化有三种方法[15],一是在纤维表面形成一薄层亲水性膜;二是在纤维表面分子上接技亲水性化合物(如SAC工艺);三是用低温等离子体技术改变纤维表面原子组成结构。目前已工业化应用的第一种方法,即在纤维表面施加具有亲水性基团的聚合物,而其它两种方法尚在不断完善中。聚合物中各种官能团吸附水分子的能力是不同的,据研究资料表明,在25℃不同相对湿度时,其吸附克分子水的关系如表7所示[16]由此可知,高聚物中的羧基盐和羟基等是有利于吸湿的,另外有一些文献资料指出一些极性基团与水分子的配位数,如表8所示[17]表8极性基与水分子配位数(三)亲水整理亲水整理剂顾名思义是能赋予纤维亲水性能的一种功能整理(助剂),基于亲水整理剂用于原来是疏水性的吸湿排汗纤维后,能生产吸湿排汗(快干)功能,因而,有些这类商品称谓吸湿排汗或吸湿快干整理剂的,这类助剂按其化学结构大致可归纳成如表9所示[18]表在亲水整理剂中,最早的著名商品是Permalose,有PermaloseT,TG和TM等品种,据称这类亲水整理剂的主要组分是聚醚酯嵌段共聚物,其分子量约为30000左右,其中聚醚段分子量为1000左右,嵌段共聚物的熔点为50℃左右(?),商品系白色非离子型水分散体。聚醚酯嵌段共聚物是共晶链段(或称硬段)和亲水链段(或称软段)相间排列的线性高分子。亲水性由亲水链段来实现,耐久性由共晶链段来保证,从而使整理效果有良好亲水性又有一定的耐久性。嵌段共聚物结构中的共晶链段与聚酯纤维有相同的分子结构,在高温条件下,可与聚酯纤维分子发生共晶结合(形成坚牢的锚点),而亲水链段(聚醚链段部分)被抛在聚酯纤维表面形成亲水性。按聚合物结晶热力学理论,聚合物分子链段活动能力越强,形成的结合越完善。我们知道普通聚酯纤维的玻璃化温度(Tg)约为69℃,其结晶熔融温度(Tm)约为267~C左右。由尹宁等人研究聚醚酯嵌段共聚物亲水剂称:当聚乙二醇的重量百分比为40~70%,其分子量为1540时的嵌段共聚物,经差示扫描热分析表明:嵌段共聚物的玻璃化温度为85.82℃,结晶熔融温度为109.10℃,由此,可认为该嵌段共聚物的整理工艺,理论上温度不低于110℃即可。经聚醚酯嵌段共聚物整理的聚酯织物,不仅是表面获得亲水性,同时其抗静电性和易去污性也得到了改善,这是顺理成章的。最近几年,为了适应聚酯织物亲水整理要求,国内一些助剂厂商和科研单位也陆续开发一批嵌段共聚物商品,如:张家港德宝化工的吸湿排汗整理DP-998,富联精细化工的吸湿排汗整理剂KI,杭州传化的吸湿排汗剂TF-620,广东德美精细化工的吸湿排汗剂DM-3402等等。(1)嵌段共聚物整理[18,21,22]本文以PermaloseTM为例说明其应用,PermaloseTM为白色水分散体非离子型,可与冷水互溶不能用热稀释,可用于纯涤纶织物及其与棉或毛混纺织物。其生态数据如下:水污染危害级别(WGK):1。生态降解度:消除DOC37%COD0.35(02)/克;BOD5<0.1克(02)/克;;BOD28<0.1克(02)/克;毒性:(鱼)LC50>100毫克/升;在合理的使用条件下,摄入不会导致中毒问题,严重口服实验(鼠)LD50>25克/千克,对皮肤和眼睛没有刺激作用。PermaloseTM要获得良好的整理效果,织物上施加量应在4%左右,而应用工艺有多种:浸染工艺:PermaloseTM可以与涤纶织物分散染料染色同时进行,但有两种不同的方式:染前处理——涤纶织物先在40℃左右PH为5~5.5的PermaloseTM稀释液中处理,逐步升温到平时加入分散染料的温度(60~80℃),在此温度保温处理10分钟,使PermaloseTM充分被涤纶纤维吸尽,然后加入分散染料溶液进行常规的染色。染色处理——涤纶织物染色还原清洗后,在40℃左右,PH值5~5.5的PermaloseTM稀释液中处理,并逐步升温至80℃,并在此温度保温处理10-20分钟,再水洗、烘干需经高温热处理。浸轧工艺:采用常规的轧-烘-焙工艺,可以进行湿-湿加工,务必使织物上施加PermaloseTM量。纯涤纶织物经PermaloseTM整理后,一般可达到毛细管效应>6cm,表面电阻(Ω)为107-8,静电压<500V半衰期<3秒。PermaloseTM应用时需注意的问题:PermaloseTM的热处理以150~170℃效果好;但染色织物热处理温度以140℃为宜,否则染料向纤维外层扩散,影响染色坚牢度,深色尤为明显;PermaloseTM用于漂白涤纶织物,可与涤纶萤光增白剂同浴进行,浸轧烘干后,在180-190℃处理30秒即可。‘PermaloseTM与免烫整理同浴进行,助剂间的配伍性要注意否则会影响PermaloseTM的效果,交联剂配伍性好的有:DMEU、DNDHEU、DMPU,乙二醛,氨基甲酸酯等;MF不适用,柔软剂中PE和有机硅柔软剂也无妨。事先最好做试验认可,如欲获得坚实手感效果,可加入适量的羧甲基纤维素(CMC)或聚乙烯醇(PVA)。(2)亲水整理的新动向[23-24]聚硅氧烷类柔软剂,经聚醚改性后,使整理织物增加了亲水性功能,改变了聚硅氧烷类柔软剂理织物的疏水性,但由于亲水性与柔软性和耐久性三者之间很难找到一个确当的平衡点,以使作为亲水性功能整理剂的应用,长时以来进展不大。二十世纪90年代,摈弃了原来聚硅氧烷侧链改性的合成路线,由原威科(Witco)公司的A、M、Cyech等人开发在硅氧烷骨架(主链)中进行氨基与聚醚基嵌段共聚硅氧烷线性聚合新技术,新的线性氨基聚醚基嵌段共聚物(AB)化学结构示意式如下:—[-(Si-O)X-Si-RNR-(0CH2CH2)a-(OCH(CH3)H2)b-ORNR-]n-线性嵌段共聚物的第一个商品为MagnasoftSRS,作为含氟易去污整理剂(ScotchgardFC-248)配套柔软剂使用。而后又推出MagnasoftJSS,据称经JSS整理的织物,如色泽不符可以直接套染和再染,无需进行有机硅的剥除予处理。不久前Waeker化学公司也开发不同聚醚链长度的嵌段类商品,WetsoftNE。由于这类商品中的聚醚链长是可以表示纤维表面亲水性的厚度,故聚醚链长的手感较链短的稍差些,其原因是整个嵌段共聚物中硅原子重量比下降所致。例如:WetsoftNE810VP/820VP在聚酯针织物上水滴润湿和芯吸试验结果,如表10所示:表10WetsoftNE810VP/820VP的亲水性经WetsoftNE整理的织物干燥速度也快,又有较好的柔软手感。线性氨基聚醚嵌段共聚硅氧烷类亲水柔软剂的应用前景,以及对现用聚醚酯嵌段共聚物亲水剂的市场占有率的挑战能力,作者认为首先取决于性/价比和品种适应性(纯纺、混纺和交织),其次是它们的整理效果的耐久性。一些信息资料表明,应用生物酶技术也能提高聚酯纤维的亲水性。五、吸湿排汗(快干)功能的测试[25-27]吸湿排汗(快干)整理产品的主要功能应是吸湿和排汗(快干)两个方面,由于提高了织物的吸湿性而其抗静性和易去污也同时有所改善,这仅是附带收获而已。一般吸湿性的测试方法,以布条毛细(管)效应法,滴液(水)法为多,偶而也有用吸水称重法等,排汗(快干)性的测试以水份蒸发(失重)法为主。这些测试方法都是摸拟织物在服用过程中吸湿排汗对液态水的吸收和散发现象,具有直观和形象化的特征。但它们都相当局限性,本文不拟对具体测试方法作任何评价,仅指出其存在的不足之处而已。布条毛细效应法:在FZ/T01071《纺织品毛细效应试验方法》上有详细说明,垂直布条一端浸入水中,测定在一定时间内上升的高度或水上升到一定高度所耗的时间,以表征织物的吸水性能,方法简便,但有方向性,经纬向(或纵横)有差异,其次仅表示最大的吸水力。再则,在室温条件下测定,如测试时间长(30min),水份的蒸发和温度变化等条件可能会干扰测试结果。所以,有些测试方法规定时间为10分钟(如JISL1907-1994的Byreck法)。液滴法:在平放的试样上,滴上定量的水滴,开始观察和记录水滴镜面现象消失的时间或润湿的面积。其优点是可测定织物经、纬向(或纵横向)的最大位移,由扩散的最大面积和完全润湿所需时间来表征吸湿性。其缺点是受试验人员主观影响较大,只是求得水滴在织物上扩散的最大面积,无法表达扩散速率。吸水称重法:类似于布条毛细效应法,将布条一端在称重仪器上,另一端浸入水中,测量一定时间的重量变化,可求得试样的吸水量,记录各个时间的称量值,可求得试样的吸水速率。其特点是直观而精确的吸水能力和速率,不足之处,对比试样准备要求高(宽度和纱线根数影响),以及称量仪器要连续记录和称量精度要高些。水份蒸发(失重法):是将一定大小的试样,平整地匝紧在烧杯口上,经调湿,置于电子天平(精度为0.001克)上称重,定量水滴在试样上,然后,隔一定时间后测定其重量变化,求得水份的蒸发率,其实,人体汗液蒸发速度,不仅取决于织物本身,还与外界温度,湿度和风速等条件密切有关。所以,快干性测试条件也只是相对比较而已。对吸湿排汗(快干)功能整理产品仅仅检测其吸水和水份蒸发二个方面,总觉得不够完备。因为在服用过程中,如人们的活动量小时,皮肤表面水蒸气散发量少或水蒸气压小时,穿着纯棉或纯聚酯服装都不会感到不舒适的,当皮肤表面与服装之间湿度增大时,如服装面料不能及时将湿气传递出去,将影响皮肤表面的正常呼吸作用,服装就可能粘附在皮肤表面使人感到不快。吸湿排汗整理织物也具有将湿气(气化水)迅速由内向外传递的功能,再由其外表面散发到外层空间,保持皮肤与服装之间的干爽状态所能承受的温湿变化的范围。基于以上考虑,作者认为应增加透湿性测试。吸湿性的“湿”应包括气态和液态两方面才是。纺织品透湿性的测试方法。一般有测定水蒸气传递速率(WatervaporFransmissionRate,简称WVT)和测定蒸发热转移阻抗两类测试方法,对纺织品和服装生产企业而言习惯采用前者,而研究部门选用后者为多。所谓WVT测定是一定温、湿度和风速条件下,单位时间内透过织物单面积的水蒸气量(g/m2·24h或g/m2·h),即以透湿量来评价织物的透湿性,详细参见GB/T12704-1991《织物透湿量测定方法,透湿杯法》。对采用有色液体测试问题,即在测定织物的毛细效应和液滴润湿性时,在水中加入部分水溶性色素,使液体在织物或纱线中传递时更易观察其前沿部位,这种改进意见很早就是诸于文献报导(如Minor.F.W.等TRJ1959,29,931;CaryR.T等TRJ1979,40,69l等)。其实水中添加染料也会产生某些情况,一是水中加入染料后,可能会引起水的界面张力和密度变化,直接影响测量的精确度;二是有色液体测得的只是织物表面的传递速度,尚不能反映织物内部的传递速度,织物内部的传递速度往往比表面速度要快些。六、结语(一)吸湿排汗技术为疏水性的合成纤维产品改善穿着舒适性叩开了一道通道,增强了合成纤维在服装领域的市场竞争力,在吸湿排汗(快干)产品开发的生产链中的各个环节(纺、织、染整等)都有大量的提高产品质量的工作可做。只有互通信息共同努力才能获得较好的吸湿排汗(快干)功能的产品,从而赢得广大消费者的青睐。(二)吸湿排汗(快干)织物的功能性,一般生产厂商关注的是吸水性和快干两项。目前国内尚未见出台这类产品的行业的产品标准,台湾纺拓会机能性纺织品的认证中,对是否符合吸湿速干纺织品,在2001.8.7就发布产品合格标准要求如下:[28]经AATCC135(I)(III)(A)iii法洗涤10次后,测试1、芯吸高度:10分钟后7cm以上;2、干燥速度:测试12分钟后,其水份蒸发率针织物达20%以上,梭织物达30%以上。2005年开始台湾纺拓会又规定了吸湿排汗速干纺织品的等级标准,分别就水份扩散能力,干燥能力,隔湿能力和吸水速度四项试验方法的结果划定了等级标准,在同年12月31日台湾已有24家企业通过了纺拓会吸湿速干纺织品的认证[29-30](三)吸湿排汗(快干)整理是纤维表面改性技术,因此,要使织物每根纤维表面都获改性处理才能使产品发挥较好的效果,至少曝露在外的纤维表面应该被包裹才行。这是制订吸湿排汗(快干)整理工艺要达到的要求,同时,还应注意整理前织物含杂的影响。参考文献[1]王锐等,吸湿速干舒适纤维及织物合成纤维2002,(11):44[2]杨栋樑,吸湿排汗纤维及其产品开发简述,全国染整新技术协作网简讯2004.2.28第23期[3]谢光裕,纤维制品的性质与材料设计的基础(五),染化杂志2003,N0.22l;62-65[4]Adamson.A.W.ThePhysicalChemistryofSurfaces,N.Y.Wiley,1969[5]WashburnE.W.,TheDynamicsofCapilliaryflowPhysics:Review1921,17(3):277[6]翟涵,吸湿排汗纤维及其作用原理研究上海纺织科技2004,32(2);6[7]谢梅娣等,Cooldry针织物导湿性能研究,上海纺织科技2004,32(2);63[8]孙锋,沟槽涤纶针织产品的热舒适性及物理机械性能,纺织导报2004(2);60-64[9]唐虹,机织面料吸湿快干梯度结构的构建,纺织学报2006,27(8);41-44[10]张红霞等,织物结构对吸湿快干面料导湿性能的影响,纺织学报2021,29(5);30-33(38)[11]张玲香等,吸湿排汗织物染整加工技术,印染,2007(5);27-29[12]刘伟,Coolplus吸湿排汗弹力织物的染整加工,印染2005,31(11);28-30[13]唐昕,吸湿排汗纤维和织物的性能及染整中若干问题的研究,国际纺织导报,2007(1);77-79[14]孙俊科,染整生产对吸湿排汗类针织物的影响,济南纺织化纤科技2007(1);41-43[15]日本东洋纺株式会社,东洋纺的合纤亲水化技术,染化杂志,2003,(6);50-55[16]大阪化学研究系列,健康快适纤维の新技术と市场,V01.3NO205,大阪化学市场中心2001.10;127-140[17]岸统,吸水性合纤邑快适性,纤维机械学全志,1982,35(8);19-24[18]杨栋樑,亲水性整理(一)(二),印染1986.12(1);41-48,(2);116-122[19]王春梅,涤纶织物亲水抗静电剂B的应用工艺,印染,200632(2);27-30(44)[20]尹宇等,聚酯-聚醚型亲水抗静电剂的合成研究,染料与染色2004,41(4);229[21]罗巨涛,涤纶织物吸湿排汗整理,印染,2006,32(21);34-36[22]张惠芳,聚酯织物吸湿排汗亲水整现的研究,上海纺织科技,2004,21(2);63-65[23]Cgech,A.M.et.al.,ModifiedSiliconersforFluorocarbonSoilReleaseTreatment,TCC1997,29,(4);26-29[24]Hobber,T.,控制织物湿度新方法纺织导报,2005(10);38-44[25]FZ/T1071,《纺织品毛细效应试验方法》[26]GB/12704-91《织物透湿量的测试方法,透湿怀法》[27]翟保京,吸湿排汗整理织物的测试技术及其进展,2005“汽巴精化杯”第二届全国中青年染整工作者论坛;196-199。中国纺织工程学会染整专委员会,2005年9月(杭州)[29]2006年台湾机能性纺织品[30]2021年台湾环保暨机能性纺织品专利(第22版)三种不同吸湿速干整理剂工艺的探讨王阳(西安工程大学纺织与材料学院,陕西西安710048)方蓓(广东溢达纺织,广东东莞528500)【摘要】以分别用水分散性聚酯、环氧树脂、有机硅三元共聚物为主成分的三种不同组分的吸湿速干整理剂,对涤纶织物和涤棉织物的整理工艺进行了研究。实验结果表明:经以聚酯为主组分的吸湿速干整理HMW8870适用于整理涤纶织物;以有机硅三元共聚物为主成分的HMW8871适用于整理涤棉织物;以环氧树脂为主成份的吸湿速干整理剂PA的整理效果相对较差。【关键词】吸湿排汗;涤纶织物;涤棉织物;整理工艺【中图分类号】TS195·6文献标识码:B文章编号:1005-9350(2007)07-0035-05休闲服和运动服等服装的面料,既要求有良好的舒适性,又要求在活动时,一旦出现汗流浃背情况,服装不会粘贴皮肤而产生冷湿感。于是消费者对面料提出了吸湿排汗功能新要求。目前,运动服装领域对该类面料的需求十分强劲,吸湿排汗产品在Nike、Adidas、Reebok等品牌中的数量逐渐增加。天然纤维的吸湿性能好,穿着舒适,但当人的出汗量稍大时,棉纤维会因吸湿而膨胀,透气性下降并粘贴在皮肤上,妨碍身体的活动,其水分发散速度也较慢,从而给人体造成一种冷湿感。聚酯纤维是当今合成纤维中最大的品种之一,它的断裂强度大,耐磨性好,又耐虫蛀,因此受到人们的喜爱。但聚酯纤维是疏水性的,其吸湿排汗性能差,产生静电效应又使其易被沾污、织物表面易起毛起球,穿着舒适性大大下降。为了改善传统棉纤维及织物的排汗快干性,并配合与日俱增的化学纤维生产,吸汗快干整理剂的开发思想在后整理界应运而生"纺织专家尝试利用吸湿速干整理剂,使之均匀而牢靠地固着在纤维表面形成亲水性的方法,开发出吸湿排汗凉爽型织物。本实验分别采用以水分散性聚酯为主组分、以环氧树脂为主成分、以有机硅三元共聚物为主成分的吸湿速干整理剂,对涤纶织物和涤棉织物进行整理工艺的研究。1实验部分1.1材料与药品1.1.1织物涤纶织物(64D,144×72;涤棉(T5O/C50,45×45,110×76)织物。1.1.2仪器电子天平(上海精密科学仪器厂),EL-400立式启动小轧车,ZC36型高阻计,SW-8型耐洗色牢度实验机,烘箱。1.1.3药品吸湿速干整理剂HMW8870,Herst提供;吸湿速干整理剂HMW8871,Herst提供;吸湿速干整理剂PA,市售;氯化镁,分析纯。1.2工艺流程1.2.1工艺(1)二浸二轧整理液HMW8870(轧液率70%-80%)→烘干(80℃,2min)→高温拉幅。1.2.2工艺(2)二浸二轧整理液PA(催化剂MgCl2用量为0.5g/L,轧液率70%-80%)→烘干(80℃,2min)→高温拉幅。1.3.2工艺(3)二浸二轧整理液HWW8871(轧液率70%-80%)→烘干(80℃,2min)→高温拉幅。1.3测试方法1.3.1吸湿性测试吸湿性测试采用日本JIS1907-02检测标准,从织物的纵向和横向分别选取5个大小均为30Omm×25mm的布片,底端栓有3.0g重的玻璃棒,浸入到KMnO4溶液中,在该状态下放置lOmin,测定由于毛细管现象溶液的上升高度,取其纵向和横向高度的平均值。1.3.2快干性测试采用台湾纺拓会标准TTFO007《吸湿速干纺织服饰品》中提供的测试方法。试验时,将6cm×6cm试样置于烧杯口部,匝紧,试样表面须平整且经纬纱不能有扭曲。将其放置在温度20±l℃、相对湿度(65±2)%的环境下平衡24h,然后放在准确度0.001的电子天平上,以滴定管口从距试样表面lcm的高度,滴0.O5mL水于试样表面,测试l2min后其水分蒸发率。水份蒸发率越大,说明速干效果越好。水份蒸发率(%)=(试样重量变化/0.05mL水之重量)×100%1.3.3抗静电性测试使用ZC36型高阻计来测定织物的表面电阻。当织物的表面电阻越小时,则它的抗静电性越好,反之则越差。1.3.4防沾污性测试采用AATCCl30-2000标准。准备两块38cm×38cm大小的整理片的织物,调湿4h(温度21±1℃,相对湿度65%±2%)后,平放在单层的AATCC吸水纸上,用滴管滴5滴玉米汕于织物表面,用7.6cm×7.6cm的玻璃纸覆盖在油污部位,再用2.268kg的重锤压在玻璃纸上,静置60s,然后移开重锤,扔掉玻璃纸。将织物样品放在全自动洗衣机中,按标准程序洗涤、脱水、烘干,对照AATCC易去污标准样照进行评级。级数越高,去污效果越好,每块织物评定2次,取4次评定级数的平均值作为最后结果。1.3.5耐洗性测定参照JIS0217-103"家用电器洗涤方法"标准进行,具体为:将含有2g/L洗衣粉的洗涤液和测试织物放入洗衣机中,控制浴比1:30,水温40℃,洗涤5min,脱水,再用冷水洗涤2min,脱水烘干。2结果与讨论实验选用以聚酯为主组分的复配物Herst㊣HMW8870、以环氧树脂为主成分的PA、以有机硅三元共聚物为主成分的Herst㊣HMW8871三种吸湿速干整理剂,分别按表1所示的工艺参数对涤棉、纯涤织物进行整理。表1整理工艺正交试验2.1吸湿速干性能的测定2.1.l经HMW8870整理按工艺(1)分别对纯涤织物与涤棉织物进行整理,得到表2。从表2可以看出,经Herst㊣HMW8870整理后,纯涤织物样品的毛细高度(lOmin)从1.7cm上升到13.5cm;水份蒸发率也从10.3%上升到100%,纯涤织物达到了很好的吸湿速干效果,但经HMW8870整理后,涤棉织物样品的毛细高度仅从2.4cm上升到8.2cm;水份蒸发率也仅从20.5%上升到85.5%,涤棉织物的吸湿速干效果不是很明显,这是因为HMW8870是聚酯和聚醚的嵌段共聚物,其中聚酯链段对涤纶有较强的亲和力,可与涤纶产生共结晶,聚醚链段起到亲水效果,所以HMW8870适合整理纯涤纶织物。从表2中R值看出,A>B>C,所以本实验中,整理表2经HMW8870整理后织物的吸湿速干性能剂的用量对织物吸湿速干性能的影响最大,焙烘温度对织物吸湿速干的性能也有影从表2中的K值可以看出,随着整埋剂HMW8870用量的增加,涤纶织物的吸湿速干性能提高。当用量达到60g/L时,涤纶织物的毛细高度和水分蒸发率达到最大值。随着焙烘温度的提高,涤纶织物的吸湿速干性能也随之提高,当焙烘温度达到200℃时,涤纶织物的毛细高度和水分蒸发率达到最大值。随着焙烘时间的延长,涤纶织物的吸湿速干性能无明显变化,考虑到效率问题,焙烘时间以0.5min为宜。最佳工艺确定为:HMW8870用于整理涤纶织物,用量为60g/L,焙烘温度为2OO℃,焙烘时间为0.5min。2·1·2经PA整理按工艺(2)分别对纯涤织物与涤棉织物进行整理,得到表3。表;水份蒸发率也从10.3%上升到69.4%经PA整理后,涤棉织物样品的毛细高度仅从2.4cm上升到9.9cm;水份蒸发率也仅从20.5%上升到72.9%,这是因为环氧树脂型吸湿速干整理剂在催化剂MgCl2的作用下环氧基开环,焙烘后羟基与纤维发生交联而形成醚键,具有亲水性。但纯涤织物和涤棉织物的吸湿速干效果都不是很理想,这是因为树脂类吸湿速干整理剂会对纤维表面坑槽或孔洞有涂覆作用,降低其吸湿性能。2.1.3经HMW8871整理按工艺(3)分别对纯涤织物与涤棉织物进行整理,得到表4。从表4可以看出,经Herst㊣HMW8871整理后,纯涤织物样品的毛细高度(lOmin)从1.7lcm上升到8.3cm;水份蒸发率从10.3%上升到84.5%,纯涤织物吸湿速干效果一般。但经HMW8871整理后,涤棉织物样品的毛细高度从2.4cm上升到14.2cm;水份蒸发率也从20.5%上升到100%,涤棉织物的吸湿速干达到了很好的效果,所以HMW8871适用于整理涤棉织物。这是因为HMW8871是一种含有环氧基团和聚醚基团的有机硅三元共聚物,环氧基团可以与棉纤维分子交联而获得牢固的吸附。侧链上的聚醚基团则为亲水基团,提供亲水性和柔软性。表从表4中R值看出,A>B>C,所以本实验中,整理剂的用量对织物吸湿速干性能的影响最大,焙烘温度对织物吸湿速干的性能也有影响,而焙烘时间几乎对其无影响。从表4中的k值可以看出,随着整理剂Herst㊣HMW8871用量的增加,涤棉织物的吸湿速干性能提高。但当用量超过50g/L时,涤棉织物的毛细高度和水分蒸发率达到逐渐降低,这是因为过多的整理剂堵塞了膨胀了的棉纤维,使纤维的缝隙减小,导致其毛效降低,随着焙烘温度的提高,涤棉织物的吸湿速干性能也随之提高,当焙烘温使达到200℃时,涤棉织物的毛细高度和水分蒸发率达到最大值,随着焙烘时间的延长,涤棉织物的吸湿速干性能无明显变化,考虑到效率问题,焙烘时间以0.5min为宜。最佳工艺确定为:HMW8871用于整理涤棉织物,用量为50g/L,焙烘温度为2OO℃,焙烘时间为0.5min。综上,经以聚酯为主组分的吸湿速干整理Herst㊣HMW8870适用于整理涤纶织物;以有机硅三元共聚物为主成分的Herst㊣HMW8871适用于整理涤棉织物;以环氧树脂为主成份的吸湿速干整理剂PA的整理效果相对较差。2.2抗静电性能的测定分别将经Herst㊣MW8870整理后的涤纶织物,经Hcrst㊣HMW8871整理后的涤棉织物的吸湿速干性能从低到高排序,用1#-16#标记,分别测其表面电阻,得到图l。图1吸湿速干整理后织物的抗静电性能实验测得未经过整理的涤纶织物的表面电阻为1.08×1013,未经过整理的涤棉织物的表面电阻为4.25×1012,从图l可以看出,织物的表面电阻与吸湿速干性能是成反比的,吸湿性能越好,表面电阻就越低,而织物的去向电阻越低,抗静电性能就越好。经过吸湿速干整理后,织物的表面电阻明显下降,涤纶织物的表面电阻从1013的数量级降低到107的数量级;涤纶织物的表面电阻从1012的数量级降低到107的数量级。这是因为随着织物吸湿性的增加,织物周围形成连续的水膜,为空气中二氧化碳和纤维中存在的电解质提供了溶解场所,从而间接地提高了表面电导率,只要吸收少量的水,就能显著提高聚合物材料的导电性。水也能为电荷提供转移介质,促进离子向相反的电极移动。织物经过整理后,吸湿性能提高,它们能够从周围环境中吸取一定水分,从而降低其本身的电阻率,加快电荷移散,使静电累积减少。2.3防沾污性测试将经Herst㊣HMW8870整理后的涤纶织物与经Herst㊣HMW8871整理后的涤棉织物进行防沾污测试,得到图2。图2吸湿速干整理后织物的防沾污性从图2看出,经过吸湿速干整理的织物中,去污效果为l级的占6.25%,2级的占12.50%,3级的占25%,4级的占56.25%。这说明经过吸湿速干整理的织物大多数都能达到易去污的效果。这是因为在织物表面引进的亲水性基团降低了水/纤维相界面张力值,亲水成分可促使水分子进人油污和纤维之间,使大块油污面产生缩聚,成为油珠,油珠继而呈卷离状态脱离织物。2.4耐久性能测试实验选用Herst㊣HMW8870整理剂60g/L,用不同温度处理纯涤织物0.5min后,测试其吸湿速干性能的耐久性,见表5。选用Herst㊣HMW8871整理剂50g/L,用不同温度处理涤棉织物0.5min后,测试其吸湿速干性能的耐久性,见表6。表5温度对HMW8870耐久性能的影响表6温度对HMW8871耐久性能的影响表中可以看出,整理后的涤纶织物与涤棉织物洗涤10次以后,其吸湿速干效果与未经过洗涤的织物相比,随着焙烘温度的提高,毛细高度与水份蒸发率降低的幅慢逐渐减小,说明随着焙烘温度提高,其耐久性能提高,这是因为随着温度升高,整理剂可以与整理织物更好的产生共结晶,从而牢固地吸附在纤维表面上,使经吸湿速干整理后的织物的吸湿速干性能和耐久性能得到提高。但从表中断裂强力保留率中可以看出,随着温度的提高,涤纶织物与涤棉织物的强力也不断下降,综合考虑,整理工艺一般控制在190℃。3结论(1)以聚酯为主组分的吸湿速干整理剂Herst㊣HMW8870对涤纶织物具有良好的吸湿速干整理效果,能显著地改善涤纶织物的吸水性、速干性、抗静电性和防沾污性。(2)以有机硅三元共聚物为主成分的吸湿速干整理剂Herst㊣W8871对涤棉织物具有良好的吸湿速干整理效果,能显著地改善涤棉织物的吸水性、速干性、抗静性和防沾污性。(3)采用Herst㊣HMW8870整理涤纶织物,最佳工艺条件为:整理剂60g/L,190℃的温度下焙烘30s。(4)采用Herst㊣HMW8871整理涤棉织物的最佳工艺条件为:整理剂用量50g/L,190℃的温度下焙烘30s。4参考文献[1]翟保京王贤瑞等,吸湿排汗整理织物的测试技术及其进展[J]印染,2005,32(2);13-14[2]李品张松等,吸湿速干纤维织物的染整工艺探讨[A]第六届全国印染后整理学术研讨会论文集[C][3]孙冰武丽芳等,吸湿排汗织物的染整加工[J]印染,2005,32(2);13-14[4]张惠芳孙楠等,聚酯织物吸湿排汗亲水整理工艺的研究[J]上海纺织科技,2004,32(2);36-38[5]付强,排汗快干面料的染整工艺[J]针织工艺,2005,(8);43-45[6]王延虎韩延军,染整生产对吸湿排汗针织物服用性能的影响[J]针织工艺,2005,(11);38-40[7]黄学水郭鹏等,Satis纤维吸湿速干产品的开v发[J]针织工艺,2005,(5):11-12[8]商成杰,功能纺织品[M]北京,中国纺织工业出版社,2006三种不同吸湿速干整理剂工艺的探讨王阳(西安工程大学纺织与材料学院,陕西西安710048)方蓓(广东溢达纺织,广东东莞528500)【摘要】以分别用水分散性聚酯、环氧树脂、有机硅三元共聚物为主成分的三种不同组分的吸湿速干整理剂,对涤纶织物和涤棉织物的整理工艺进行了研究。实验结果表明:经以聚酯为主组分的吸湿速干整理HMW8870适用于整理涤纶织物;以有机硅三元共聚物为主成分的HMW8871适用于整理涤棉织物;以环氧树脂为主成份的吸湿速干整理剂PA的整理效果相对较差。【关键词】吸湿排汗;涤纶织物;涤棉织物;整理工艺【中图分类号】TS195·6文献标识码:B文章编号:1005-9350(2007)07-0035-05休闲服和运动服等服装的面料,既要求有良好的舒适性,又要求在活动时,一旦出现汗流浃背情况,服装不会粘贴皮肤而产生冷湿感。于是消费者对面料提出了吸湿排汗功能新要求。目前,运动服装领域对该类面料的需求十分强劲,吸湿排汗产品在Nike、Adidas、Reebok等品牌中的数量逐渐增加。天然纤维的吸湿性能好,穿着舒适,但当人的出汗量稍大时,棉纤维会因吸湿而膨胀,透气性下降并粘贴在皮肤上,妨碍身体的活动,其水分发散速度也较慢,从而给人体造成一种冷湿感。聚酯纤维是当今合成纤维中最大的品种之一,它的断裂强度大,耐磨性好,又耐虫蛀,因此受到人们的喜爱。但聚酯纤维是疏水性的,其吸湿排汗性能差,产生静电效应又使其易被沾污、织物表面易起毛起球,穿着舒适性大大下降。为了改善传统棉纤维及织物的排汗快干性,并配合与日俱增的化学纤维生产,吸汗快干整理剂的开发思想在后整理界应运而生"纺织专家尝试利用吸湿速干整理剂,使之均匀而牢靠地固着在纤维表面形成亲水性的方法,开发出吸湿排汗凉爽型织物。本实验分别采用以水分散性聚酯为主组分、以环氧树脂为主成分、以有机硅三元共聚物为主成分的吸湿速干整理剂,对涤纶织物和涤棉织物进行整理工艺的研究。1实验部分1.1材料与药品1.1.1织物涤纶织物(64D,144×72;涤棉(T5O/C50,45×45,110×76)织物。1.1.2仪器电子天平(上海精密科学仪器厂),EL-400立式启动小轧车,ZC36型高阻计,SW-8型耐洗色牢度实验机,烘箱。1.1.3药品吸湿速干整理剂HMW8870,Herst提供;吸湿速干整理剂HMW8871,Herst提供;吸湿速干整理剂PA,市售;氯化镁,分析纯。1.2工艺流程1.2.1工艺(1)二浸二轧整理液HMW8870(轧液率70%-80%)→烘干(80℃,2min)→高温拉幅。1.2.2工艺(2)二浸二轧整理液PA(催化剂MgCl2用量为0.5g/L,轧液率70%-80%)→烘干(80℃,2min)→高温拉幅。1.3.2工艺(3)二浸二轧整理液HWW8871(轧液率70%-80%)→烘干(80℃,2min)→高温拉幅。1.3测试方法1.3.1吸湿性测试吸湿性测试采用日本JIS1907-02检测标准,从织物的纵向和横向分别选取5个大小均为30Omm×25mm的布片,底端栓有3.0g重的玻璃棒,浸入到KMnO4溶液中,在该状态下放置lOmin,测定由于毛细管现象溶液的上升高度,取其纵向和横向高度的平均值。1.3.2快干性测试采用台湾纺拓会标准TTFO007《吸湿速干纺织服饰品》中提供的测试方法。试验时,将6cm×6cm试样置于烧杯口部,匝紧,试样表面须平整且经纬纱不能有扭曲。将其放置在温度20±l℃、相对湿度(65±2)%的环境下平衡24h,然后放在准确度0.001的电子天平上,以滴定管口从距试样表面lcm的高度,滴0.O5mL水于试样表面,测试l2min后其水分蒸发率。水份蒸发率越大,说明速干效果越好。水份蒸发率(%)=(试样重量变化/0.05mL水之重量)×100%1.3.3抗静电性测试使用ZC36型高阻计来测定织物的表面电阻。当织物的表面电阻越小时,则它的抗静电性越好,反之则越差。1.3.4防沾污性测试采用AATCCl30-2000标准。准备两块38cm×38cm大小的整理片的织物,调湿4h(温度21±1℃,相对湿度65%±2%)后,平放在单层的AATCC吸水纸上,用滴管滴5滴玉米汕于织物表面,用7.6cm×7.6cm的玻璃纸覆盖在油污部位,再用2.268kg的重锤压在玻璃纸上,静置60s,然后移开重锤,扔掉玻璃纸。将织物样品放在全自动洗衣机中,按标准程序洗涤、脱水、烘干,对照AATCC易去污标准样照进行评级。级数越高,去污效果越好,每块织物评定2次,取4次评定级数的平均值作为最后结果。1.3.5耐洗性测定参照JIS0217-103"家用电器洗涤方法"标准进行,具体为:将含有2g/L洗衣粉的洗涤液和测试织物放入洗衣机中,控制浴比1:30,水温40℃,洗涤5min,脱水,再用冷水洗涤2min,脱水烘干。2结果与讨论实验选用以聚酯为主组分的复配物Herst㊣HMW8870、以环氧树脂为主成分的PA、以有机硅三元共聚物为主成分的Herst㊣HMW8871三种吸湿速干整理剂,分别按表1所示的工艺参数对涤棉、纯涤织物进行整理。表1整理工艺正交试验2.1吸湿速干性能的测定2.1.l经HMW8870整理按工艺(1)分别对纯涤织物与涤棉织物进行整理,得到表2。从表2可以看出,经Herst㊣HMW8870整理后,纯涤织物样品的毛细高度(lOmin)从1.7cm上升到13.5cm;水份蒸发率也从10.3%上升到100%,纯涤织物达到了很好的吸湿速干效果,但经HMW8870整理后,涤棉织物样品的毛细高度仅从2.4cm上升到8.2cm;水份蒸发率也仅从20.5%上升到85.5%,涤棉织物的吸湿速干效果不是很明显,这是因为HMW8870是聚酯和聚醚的嵌段共聚物,其中聚酯链段对涤纶有较强的亲和力,可与涤纶产生共结晶,聚醚链段起到亲水效果,所以HMW8870适合整理纯涤纶织物。从表2中R值看出,A>B>C,所以本实验中,整理表2经HMW8870整理后织物的吸湿速干性能剂的用量对织物吸湿速干性能的影响最大,焙烘温度对织物吸湿速干的性能也有影从表2中的K值可以看出,随着整埋剂HMW8870用量的增加,涤纶织物的吸湿速干性能提高。当用量达到60g/L时,涤纶织物的毛细高度和水分蒸发率达到最大值。随着焙烘温度的提高,涤纶织物的吸湿速干性能也随之提高,当焙烘温度达到200℃时,涤纶织物的毛细高度和水分蒸发率达到最大值。随着焙烘时间的延长,涤纶织物的吸湿速干性能无明显变化,考虑到效率问题,焙烘时间以0.5min为宜。最佳工艺确定为:HMW8870用于整理涤纶织物,用量为60g/L,焙烘温度为2OO℃,焙烘时间为0.5min。2·1·2经PA整理按工艺(2)分别对纯涤织物与涤棉织物进行整理,得到表3。表;水份蒸发率也从10.3%上升到69.4%经PA整理后,涤棉织物样品的毛细高度仅从2.4cm上升到9.9cm;水份蒸发率也仅从20.5%上升到72.9%,这是因为环氧树脂型吸湿速干整理剂在催化剂MgCl2的作用下环氧基开环,焙烘后羟基与纤维发生交联而形成醚键,具有亲水性。但纯涤织物和涤棉织物的吸湿速干效果都不是很理想,这是因为树脂类吸湿速干整理剂会对纤维表面坑槽或孔洞有涂覆作用,降低其吸湿性能。2.1.3经HMW8871整理按工艺(3)分别对纯涤织物与涤棉织物进行整理,得到表4。从表4可以看出,经Herst㊣HMW8871整理后,纯涤织物样品的毛细高度(lOmin)从1.7lcm上升到8.3cm;水份蒸发率从10.3%上升到84.5%,纯涤织物吸湿速干效果一般。但经HMW8871整理后,涤棉织物样品的毛细高度从2.4cm上升到14.2cm;水份蒸发率也从20.5%上升到100%,涤棉织物的吸湿速干达到了很好的效果,所以HMW8871适用于整理涤棉织物。这是因为HMW8871是一种含有环氧基团和聚醚基团的有机硅三元共聚物,环氧基团可以与棉纤维分子交联而获得牢固的吸附。侧链上的聚醚基团则为亲水基团,提供亲水性和柔软性。表从表4中R值看出,A>B>C,所以本实验中,整理剂的用量对织物吸湿速干性能的影响最大,焙烘温度对织物吸湿速干的性能也有影响,而焙烘时间几乎对其无影响。从表4中的k值可以看出,随着整理剂Herst㊣HMW8871用量的增加,涤棉织物的吸湿速干性能提高。但当用量超过50g/L时,涤棉织物的毛细高度和水分蒸发率达到逐渐降低,这是因为过多的整理剂堵塞了膨胀了的棉纤维,使纤维的缝隙减小,导致其毛效降低,随着焙烘温度的提高,涤棉织物的吸湿速干性能也随之提高,当焙烘温使达到200℃时,涤棉织物的毛细高度和水分蒸发率达到最大值,随着焙烘时间的延长,涤棉织物的吸湿速干性能无明显变化,考虑到效率问题,焙烘时间以0.5min为宜。最佳工艺确定为:HMW8871用于整理涤棉织物,用量为50g/L,焙烘温度为2OO℃,焙烘时间为0.5min。综上,经以聚酯为主组分的吸湿速干整理Herst㊣HMW8870适用于整理涤纶织物;以有机硅三元共聚物为主成分的Herst㊣HMW8871适用于整理涤棉织物;以环氧树脂为主成份的吸湿速干整理剂PA的整理效果相对较差。2.2抗静电性能的测定分别将经Herst㊣MW8870整理后的涤纶织物,经Hcrst㊣HMW8871整理后的涤棉织物的吸湿速干性能从低到高排序,用1#-16#标记,分别测其表面电阻,得到图l。图1吸湿速干整理后织物的抗静电性能实验测得未经过整理的涤纶织物的表面电阻为1.08×1013,未经过整理的涤棉织物的表面电阻为4.25×1012,从图l可以看出,织物的表面电阻与吸湿速干性能是成反比的,吸湿性能越好,表面电阻就越低,而织物的去向电阻越低,抗静电性能就越好。经过吸湿速干整理后,织物的表面电阻明显下降,涤纶织物的表面电阻从1013的数量级降低到107的数量级;涤纶织物的表面电阻从1012的数量级降低到107的数量级。这是因为随着织物吸湿性的增加,织物周围形成连续的水膜,为空气中二氧化碳和纤维中存在的电解质提供了溶解场所,从而间接地提高了表面电导率,只要吸收少量的水,就能显著提高聚合物材料的导电性。水也能为电荷提供转移介质,促进离子向相反的电极移动。织物经过整理后,吸湿性能提高,它们能够从周围环境中吸取一定水分,从而降低其本身的电阻率,加快电荷移散,使静电累积减少。2.3防沾污性测试将经Herst㊣HMW8870整理后的涤纶织物与经Herst㊣HMW8871整理后的涤棉织物进行防沾污测试,得到图2。图2吸湿速干整理后织物的防沾污性从图2看出,经过吸湿速干整理的织物中,去污效果为l级的占6.25%,2级的占12.50%,3级的占25%,4级的占56.25%。这说明经过吸湿速干整理的织物大多数都能达到易去污的效果。这是因为在织物表面引进的亲水性基团降低了水/纤维相界面张力值,亲水成分可促使水分子进人油污和纤维之间,使大块油污面产生缩聚,成为油珠,油珠继而呈卷离状态脱离织物。2.4耐久性能测试实验选用Herst㊣HMW8870整理剂60g/L,用不同温度处理纯涤织物0.5min后,测试其吸湿速干性能的耐久性,见表5。选用Herst㊣HMW8871整理剂50g/L,用不同温度处理涤棉织物0.5min后,测试其吸湿速干性能的耐久性,见表6。表5温度对HMW8870耐久性能的影响表6温度对HMW8871耐久性能的影响表中可以看出,整理后的涤纶织物与涤棉织物洗涤10次以后,其吸湿速干效果与未经过洗涤的织物相比,随着焙烘温度的提高,毛细高度与水份蒸发率降低的幅慢逐渐减小,说明随着焙烘温度提高,其耐久性能提高,这是因为随着温度升高,整理剂可以与整理织物更好的产生共结晶,从而牢固地吸附在纤维表面上,使经吸湿速干整理后的织物的吸湿速干性能和耐久性能得到提高。但从表中断裂强力保留率中可以看出,随着温度的提高,涤纶织物与涤棉织物的强力也不断下降,综合考虑,整理工艺一般控制在190℃。3结论(1)以聚酯为主组分的吸湿速干整理剂Herst㊣HMW8870对涤纶织物具有良好的吸湿速干整理效果,能显著地改善涤纶织物的吸水性、速干性、抗静电性和防沾污性。(2)以有机硅三元共聚物为主成分的吸湿速干整理剂Herst㊣W8871对涤棉织物具有良好的吸湿速干整理效果,能显著地改善涤棉织物的吸水性、速干性、抗静性和防沾污性。(3)采用Herst㊣HMW8870整理涤纶织物,最佳工艺条件为:整理剂60g/L,190℃的温度下焙烘30s。(4)采用Herst㊣HMW8871整理涤棉织物的最佳工艺条件为:整理剂用量50g/L,190℃的温度下焙烘30s。4参考文献[1]翟保京王贤瑞等,吸湿排汗整理织物的测试技术及其进展[J]印染,2005,32(2);13-14[2]李品张松等,吸湿速干纤维织物的染整工艺探讨[A]第六届全国印染后整理学术研讨会论文集[C][3]孙冰武丽芳等,吸湿排汗织物的染整加工[J]印染,2005,32(2);13-14[4]张惠芳孙楠等,聚酯织物吸湿排汗亲水整理工艺的研究[J]上海纺织科技,2004,32(2);36-38[5]付强,排汗快干面料的染整工艺[J]针织工艺,2005,(8);43-45[6]王延虎韩延军,染整生产对吸湿排汗针织物服用性能的影响[J]针织工艺,2005,(11);38-40[7]黄学水郭鹏等,Satis纤维吸湿速干产品的开v发[J]针织工艺,2005,(5):11-12[8]商成杰,功能纺织品[M]北京,中国纺织工业出版社,2006涤纶织物吸湿整理工艺研究尚汴卿,袁琴华,陈银梅(东华大学,上诲200051)
摘要:通过对涤纶织物用浸轧法进行工艺研究和效果探测,在四种方案中筛选出一种较好的亲水整理剂,并进一步对它的浓度、pH值、预焙烘温度和时间以及催化剂用量等工艺参数进行了试验,找出了最佳亲水整理工艺。关键词:涤纶;吸湿性;亲水整理;交联中图分类亨TS195·591·2文献标识码:B文章编号:1005-9350(2003)06-0034-02涤纶织物有很多天然纤维织物所没有的优点,应用日益广泛起来。但是涤纶纤维吸湿性差,在标准状态下(20℃相对湿度65%)其吸湿率只有0.4%左右,即使在100%相对湿度下的吸湿率也仅为0.6%-0.8%。涤纶纤维的低吸湿性给它带来一些缺陷,例如;易产生静电、沾污,穿着闷热,不透气,手感差以及染色较难。这些缺陷阻碍了涤纶纤维的发展,因而提高它的吸湿性成了人们迫切要解决的问题。1改善涤纶织物吸湿性的方法改善涤纶织物吸湿性的方法有很多,比如混纺、大分子结构的亲水化、与亲水性物质接枝共聚以及纤维表面处理等等。利用亲水剂,使之均匀而牢靠地固着在纤维表面形成亲水性的方法,是近年来合成纤维织物亲水整理的发展方向。试验中采用的1#亲水剂是聚酯和聚醚与聚硅氧烷的复配物,聚酯与涤纶分子组成单元相同,在高温处理后能够形成共结晶,提供了亲水整理的耐洗性。聚醚组分则因具有亲水性,使整理后的涤纶织物改善了吸湿性,从而提高了涤纶纤维的抗静电性和防沾污性。聚硅氧烷含有一个-OH端基团,可以与织物发生交联。也可以二甲基二氯硅烷水解而成的链形分子交联得到一种弹性薄膜,使织物不仅具有良好的弹性,还使整理具有耐久性。2#亲水剂是环氧树脂型亲水整理剂,环氧树脂在催化剂作用下环氧基开环,焙烘后羟基与纤维发生交联而形成醚键,具有亲水性。3#亲水剂是一种有机硅亲水整理剂,这是一种含有环氧基团和聚醚基团的有机硅三元共聚物。环氧基团可以与纤维分子交联而获得耐久性。侧链上的聚醚基团则为亲水基团,提供亲水性和柔软性。4#亲水剂是一种深层渗透剂,含有磺酸基团和氨基,因此渗透性好,但不耐久。2实验2·1实验用织物涤平纺2·2实验药品1#亲水剂、2#亲水剂、3#亲水剂、4#亲水剂,工业品;氯化镁(A.P)2·3实验方法、结果与讨论2·3·1实验方法首先将涤纶织物进行碱减量处理,再用不同的亲水剂进行浸轧处理,工艺流程为二浸二轧、烘干、焙烘,通过比较得出最佳亲水剂,再深入研究亲水剂用量、pH值、烘干温度、烘干时间、焙烘温度、焙烘时间的影响,选出最佳工艺条件。2·3·2结果与讨论2·3·2·1不同浓度的1#,2#,3#,4#亲水剂吸水时间的比较准确称取纯涤纶织物,配制溶液,催化剂(MgCl2)用量为0.5g/L,用HAC调节pH=5,二浸二轧,1lO℃烘干2min,180℃焙烘30s。表1各种亲水剂整理后的吸水时间比较亲水剂用量(g/L)10202530354045
1#2#3#4#126.61417.66323.9140.96123.51318.03319.71108.18106.13318.01333.7193.0783.47410.13345.8381.41133.54372.98301.8171.00150.33336.67340.87121.53163.83420.00365.44143.05由表1可知,1#用量达30g/L时吸水时间最短,而4#则在35g/L时吸水时间最短,浓度继续增大,效果降低。可能是由于浓度太大,亲水剂分子会堵塞织物上纤维间的空隙而影响毛细效应。相对于1#和4#来看,2#和3#的效果较差。2·3·2·2pH值的影响表2pH值对吸水时间的影响pH值2468101#(30g/L)120.6267.52129.16119.52172.684#(35g/L)166.04146.19204.33171.83183.91由表2可知,当pH值等于4时,吸水时间最短,查见两种亲水剂与涤纶织物作用要在弱酸条件下进行。2·3·2·3烘干温度的影响表3烘干温度对整理效果的影响(pH=4)1#强力/N4#烘干温度/℃吸水时间/s烘干温度/℃吸水时间/s90100110120130401.7792.5065.9475.5378.815495886225495448090100110120132.8583.84138.11183.05199.84有表3可见,对于1#亲水剂,110℃烘干时,吸水时间最短,而4#亲水剂90℃烘干时吸水时间最短。从强力变化数据来看,烘干温度不同,对织物强力影响并不大。2·3·2·4烘干时间的影响表4烘干时间对整理效果的影晌1#(110℃)4#(90℃)烘干时间/min吸水时间/s烘干时间/min吸水时间/s283.881161.85481.351.5123.136100.662146.858102.144145.55由表中看出,烘干时间对1#吸水时间的影响并不明显,考虑到实际生产工艺的因素,我们只要用2min烘干即可。对于4#烘干1.5min即可。2·3·2·5焙烘温度的影响随焙烘温度升高,1#亲水剂整理过的织物的吸水性提高,但超过190℃以后,强力下降较大,对织物损伤较大,而且皂洗牢度也不好,4#亲水剂整理过的织物170℃焙烘后吸水最快,但皂洗牢度很差。表5焙烘温度对亲水剂整理效果的影响
温度℃1601701801902001#
吸水时间/s强力/N皂洗后吸水时间/s178.67539306.04110.36549282.04103.25480305.2587.33558246.9072.50490420.004#吸水时间/s皂洗后吸水时间/s168.50323.19123.70397.64133.12260.31126.82600.00122.59540.00注:l#亲水剂110℃烘干2min,4#亲水剂90℃烘干90s。2·3·2·6焙烘时间的影响表6焙烘时间对吸水时间的影响焙烘时间/s30456075901#(190℃)87.30107.69115.90127.02253.171#(170℃)180.96159.59152.07108.15130.671#亲水剂整理的织物焙烘30s,吸水速度最快,4#吸水剂整理的织物焙烘75s吸水速度最快。2·3·2·7轧液率的影响表7轧液率对l#亲水剂整理效果的影响轧液率/%吸水时间s5077.206056.666574.20轧液率60%时,整理过的织物吸水时间最短。2·3·2·8催化剂浓度的影响表8催化剂浓度对吸水时间的影响MgCl2/g/L0.250.500.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临沂科技职业学院《人力资源管理前沿专题》2023-2024学年第一学期期末试卷
- 江苏工程职业技术学院《生命科学基础》2023-2024学年第一学期期末试卷
- 华东政法大学《无机材料综合实验II》2023-2024学年第一学期期末试卷
- 湖北黄冈应急管理职业技术学院《网络存储技术与实践》2023-2024学年第一学期期末试卷
- 珠海科技学院《临床医学概论(内科学)》2023-2024学年第一学期期末试卷
- 浙江同济科技职业学院《电气传动与控制》2023-2024学年第一学期期末试卷
- 中南财经政法大学《聚合过程与原理》2023-2024学年第一学期期末试卷
- 长沙理工大学城南学院《技法理论》2023-2024学年第一学期期末试卷
- 云南交通职业技术学院《医药市场调研与预测》2023-2024学年第一学期期末试卷
- 新一代信息技术产业布局
- 2020年上海市高考英语二模试卷(a卷)
- 对账单标准模板
- 小学科学教科版四年级下册第二单元《电路》复习教案(2023春新课标版)
- 创业计划书(成人用品店)
- 电机的结构及工作原理
- GB 6245-2006消防泵
- 空调维修保养服务突发事件应急处置方案
- 东岸冲沙闸及进水闸施工方案
- 宠物入住酒店免责协议
- 2022年沪教版(全国)九年级化学下册第6章溶解现象章节测试试卷(精选含答案)
- 河南省地图含市县地图矢量分层地图行政区划市县概况ppt模板
评论
0/150
提交评论