




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章位移法§8-1.位移法的基本原理已有的知识:(2)静定结构的内力分析和位移计算;(1)结构组成分析;(3)超静定结构的内力分析和位移计算力法;已解得如下单跨梁结果。ABAB位移法中的基本单跨梁超静定单跨梁的力法结果(2)载载载超静定单跨梁的力法结果(3)载载载1超静定单跨梁的力法结果(4)形载形载超静定单跨梁的力法结果(6)载载载载超静定单跨梁的力法结果(7)载载载形超静定单跨梁的力法结果(8)载载载载超静定单跨梁的力法结果(10)载载载回顾力法的思路:(1)解除多余约束代以基本未知力,确定基本结构、基本体系;(2)分析基本结构在未知力和“荷载”共同作用下的变形,消除与原结构的差别,建立力法典型方程;(3)求解未知力,将超静定结构化为静定结构。核心是化未知为已知在线性小变形条件下,由叠加原理可得单跨超静定梁在荷载、温改和支座移动共同作用下FPxy同理,另两类杆的转角位移方程为A端固定B端铰支A端固定B端定向位移法第一种基本思路图示各杆长度为l,EI
等于常数,分布集度q,集中力FP
,力偶M
.如何求解?qFPFPM力法未知数个数为3,但独立位移未知数只有一(A点转角,设为).ΔFPFP位移法第一种基本思路在此基础上,由图示结点平衡得利用转角位移方程可得:第二种基本思路图示各杆长度为l,EI
等于常数,分布集度q,集中力FP
,力偶M
.如何求解?qFPFPMΔFPFP以A
点转角做基本未知量,设为
.在A施加限制转动的约束,以如图所示体系为基本体系(基本结构的定义和力法相仿).第二种基本思路
利用“载常数”可作图示荷载弯矩图利用“形常数”可作图示单位弯矩图
根据两图结点平衡可得附加约束反力第二种基本思路位移法思路(典型方程法)
以位移为基本未知量,先“固定”(不产生任何位移)考虑外因作用,由“载常数”得各杆受力,作弯矩图。令结点产生单位位移(无其他外因),由“形常数”得各杆受力,作弯矩图。两者联合原结构无约束,应无附加约束反力(平衡).
列方程可求位移。基本思路两种解法对比:典型方程法和力法一样,直接对结构按统一格式处理。最终结果由迭加得到。平衡方程法对每杆列转角位移方程,视具体问题建平衡方程。位移法方程概念清楚,杆端力在求得位移后代转角位移方程直接可得。位移法方程:
两法最终方程都是平衡方程。整理后形式均为:典型方程法基本概念位移未知量(一些特殊情况以后结合例题讨论)结点位移包括角位移和线位移
独立角位移na
=刚结点数;独立线位移nl
=?不考虑轴向变形时:
nl=‘刚结点’变成铰,为使铰结体系几何不变所需加的支杆数。考虑轴向变形时:
nl=结点数2–约束数总未知量n
=na+nl
。手算时电算时位移未知数确定举例位移未知数确定举例位移未知数确定举例位移未知数确定练习位移未知数确定练习位移未知数确定练习位移未知数确定练习典型方程法基本概念基本结构:加约束“无位移”,能拆成已知杆端力-杆端位移关系“单跨梁”的超静定结构。基本体系:受外因和未知位移的基本结构。①②③④⑤典型方程法基本概念基本方程:
外因和未知位移共同作用时,附加约束没有反力——实质为平衡方程。外因附加反力为零未知位移典型方程法步骤确定独立位移未知量数目(隐含建立基本体系,支杆只限制线位移,限制转动的约束不能阻止线位移)作基本未知量分别等于单位时的单位弯矩图作外因(主要是荷载)下的弯矩图由上述弯矩图取结点、隔离体求反力系数典型方程法步骤建立位移法典型方程并且求解:按迭加法作最终弯矩图取任意部分用平衡条件进行校核例一:用位移法计算图示刚架,并作弯矩图.
E=常数.单位弯矩图和荷载弯矩图示意图如下:熟记了“形、载常数”吗?如何求?图4i4i8i2i单位弯矩图为图8i8i4i4i4i2i4i8i4i4i4i8i8i取结点考虑平衡荷载弯矩图图取结点考虑平衡位移法典型方程:最终内力:请自行作出最终M图例二:用位移法计算图示刚架,并作弯矩图.
E=常数.单位弯矩图和荷载弯矩图示意图如下:熟记了“形、载常数”吗?如何求?4i6i6ik116i/lk12=
k21k12=
k21k21=
k126i/lk223i/l23i/l212i/l2R1P由形、载常数可得单位和荷载弯矩图如下:6i6i4i2i3i/l3i/l6i/lql2/8ql2/8R2P3ql/8取结点和横梁为隔离体,即可求得全部系数请自行列方程、求解并叠加作弯矩图例三:图示等截面连续梁,B支座下沉,C支座下沉0.6.EI等于常数,作弯矩图.单位弯矩和支座位移弯矩图的示意图如下:熟记了“形常数”吗?如何求?单位弯矩图和荷载弯矩图示意图如下:例四:用位移法计算图示刚架,并作弯矩图.
E=常数.4m熟记了“形常数”吗?40如何求?3EI/16特殊情况讨论(剪力分配法)如何求解工作量最少?例五:用位移法计算图示刚架,并作弯矩图.
E=常数.3m6kN/m3I对称时3m6kN/m3I反对称时对称荷载组用位移法求解反对称荷载组用力法求解联合法例六:用位移法计算图示刚架,并作弯矩图.E=常数.利用对称性C处什麽支座?怎样才能拆成有力-位移关系的单跨梁?n等于多少?利用对称性BC杆属于哪类“单元”?它的单位和荷载弯矩图怎麽作?取半计算简图例七:刚架温度变化如图,试作其弯矩图.
EI=常数,截面为矩形,高为h.线胀系数4mB利用对称性后,B点有没有位移?A点线位移已知否?取半结构位移未知数等于几?请自行求解!例八:试作图示结构弯矩图.请自行列方程、求解并叠加作弯矩图例九:试作图示结构弯矩图.请自行列方程、求解并叠加作弯矩图已知楼层第j个柱子的抗侧移刚度为12EIj/h3,那么图示层侧移刚度ki等于多少?ki=Σ12EIj/h3,kii、kii+1=多少?n层刚架结构刚度矩阵[K]什么样?例十:试作图示结构弯矩图.135o7.071i/l7.071i/l5.657i/lql2/89i/l27.071i/l请自行求系数、列方程、求解并叠加作弯矩图从上述例子可以得到一些什麽结论?力法、位移法对比力法基本未知量:多余力基本结构:一般为静定结构,能求M的超静定结构也可。作单位和外因内力图由内力图自乘、互乘求系数,主系数恒正。建立力法方程(协调)位移法基本未知量:结点独立位移基本结构:无位移超静定次数更高的结构作单位和外因内力图由内力图的结点、隔离体平衡求系数,主系数恒正。建立位移法方程(平衡)
解方程求独立结点位移迭加作内力图用变形条件进行校核
解方程求独立结点位移迭加作内力图用平衡条件进行校核混合法基本思路
联合法是一个计算简图用同一种方法,联合应用力法、位移法。
混合法则是同一个计算简图一部分用力法、另一部分用位移法。超静定次数少,独立位移多的部分取力为未知量。超
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国电阻丝发热元件行业投资前景及策略咨询研究报告
- 2025至2031年中国多媒体耳机线行业投资前景及策略咨询研究报告
- 2025至2031年中国可掀式镜框行业投资前景及策略咨询研究报告
- 2025至2030年中国编码电缆数据监测研究报告
- 2025至2030年中国电脑查片仪数据监测研究报告
- 商洛水磨石地坪施工方案
- 昌平区车辆道路施工方案
- 2025至2030年中国多功能手术仪数据监测研究报告
- 2025至2030年中国可编程滤波器数据监测研究报告
- 2025至2030年中国促销筐数据监测研究报告
- 光缆线路施工安全协议书范本
- 《我国国有企业股权融资效率实证研究》相关概念及国内外文献综述2600字
- 2025年湖南交通职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 成本合约规划培训
- 山东省济宁市2025届高三历史一轮复习高考仿真试卷 含答案
- 五年级数学(小数乘法)计算题专项练习及答案
- 交通法规教育课件
- 产前诊断室护理工作总结
- 6S管理知识培训课件
- 小学校长任期五年工作目标(2024年-2029年)
- 医院培训课件:《猴痘流行病学特点及中国大陆首例猴痘病例调查处置》
评论
0/150
提交评论