




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初高中数学衔接知识点的专题强化训练不等式习题集及答案【要点回顾】1.一元二次不等式及其解法[1]定义:形如为关于的一元二次不等式.[2]一元二次不等式与二次函数及一元二次方程的关系(简称:三个二次).(ⅰ)一般地,一元二次不等式可以结合相应的二次函数、一元二次方程求解,步骤如下:(1)将二次项系数先化为正数;(2)观测相应的二次函数图象.①如果图象与轴有两个交点,此时对应的一元二次方程有两个不相等的实数根(也可由根的判别式来判断).则②如果图象与轴只有一个交点,此时对应的一元二次方程有两个相等的实数根(也可由根的判别式来判断).则: ③如果图象与轴没有交点,此时对应的一元二次方程没有实数根(也可由根的判别式来判断).则:(ⅱ)解一元二次不等式的步骤是:(1)化二次项系数为正;(2)若二次三项式能分解成两个一次因式的积,则求出两根.那么“”型的解为(俗称两根之外);“”型的解为(俗称两根之间);(3)否则,对二次三项式进行配方,变成,结合完全平方式为非负数的性质求解.2.简单分式不等式的解法解简单的分式不等式的方法:对简单分式不等式进行等价转化,转化为整式不等式,应当注意分母不为零.3.含有字母系数的一元一次不等式一元一次不等式最终可以化为的形式.[1]当时,不等式的解为:;[2]当时,不等式的解为:;[3]当时,不等式化为:;①若,则不等式的解是全体实数;②若,则不等式无解.【例题选讲】例1解下列不等式:(1) (2)⑴解法一:原不等式可以化为:,于是:或所以,原不等式的解是.解法二:解相应的方程得:,所以原不等式的解是.(2)解法一:原不等式可化为:,即于是:,所以原不等式的解是.解法二:原不等式可化为:,即,解相应方程,得,所以原不等式的解是.说明:解一元二次不等式,实际就是先解相应的一元二次方程,然后再根据二次函数的图象判断出不等式的解.例2解下列不等式:(1) (2) (3)例3已知对于任意实数,恒为正数,求实数的取值范围.例4解下列不等式: (1) (2)例5求关于的不等式的解.解:原不等式可化为:(1)当时,,不等式的解为;(2)当时,.①时,不等式的解为;②时,不等式的解为;③时,不等式的解为全体实数.(3)当时,不等式无解.综上所述:当或时,不等式的解为;当时,不等式的解为;当时,不等式的解为全体实数;当时,不等式无解.【巩固练习】1.解下列不等式: (1) (2) (3) (4)2.解下列不等式: (1) (2)(3) (4)3.解下列不等式: (1) (2)4.解关于的不等式.5.已知关于的不等式的解是一切实数,求的取值范围.6.若不等式的解是,求的值.7.取何值时,代数式的值不小于0?专题七不等式答案例2解:(1)不等式可化为∴不等式的解是(2)不等式可化为 ∴不等式的解是;(3)不等式可化为.例3解:显然不合题意,于是:例4分析:(1)类似于一元二次不等式的解法,运用“符号法则”将之化为两个一元一次不等式组处理;或者因为两个数(式)相除异号,那么这两个数(式)相乘也异号,可将分式不等式直接转化为整式不等式求解.(2)注意到经过配方法,分母实际上是一个正数.解:(1)解法(一)原不等式可化为:解法(二)原不等式可化为:.(2)解:原不等式可化为:说明:(1)转化为整式不等式时,一定要先将右端变为0.(2)本例也可以直接去分母,但应注意讨论分母
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45292-2025轮胎翻新生产技术条件
- 农村山地承包合同管理规定其四
- 市场调研服务合同协议范本
- 详解:中保人寿保险合同之66鸿运保险(B型)
- 超市人力资源服务合同样本
- 计算机销售与技术服务合同协议
- 公司机密信息保护合同
- 股东权益分红合同范本详解
- 100以内的加法和减法(二)(教学设计)-2024-2025学年二年级上册数学人教版
- 双方合作经营合同模板
- 工程项目部安全生产治本攻坚三年行动实施方案
- 2024三农新政策解读
- HGE系列电梯安装调试手册(ELS05系统SW00004269,A.4 )
- 水利工程水库混凝土防渗墙施工方案
- 2022春苏教版五年级下册科学全册单元课件全套
- 小学期末班级颁奖典礼动态PPT模板
- 液碱生产工序及生产流程叙述
- 图解调音台使用说明(共14页)
- 人民军队性质宗旨和优良传统教育课件教案
- 心理抗压能力测试例题
- 操作系统试题
评论
0/150
提交评论