




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市2023-2023学年高二上学期期末调研考试数学(理)试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线的准线方程是()A.B.C.D.【答案】A【解析】抛物线,满足,所以,则.所以准线方程是.故选A.2.从某中学甲班随机抽取9名男同学测量他们的体重(单位:kg),获得体重数据如茎叶图所示,对这些数据,以下说法正确的是()A.中位数为62B.中位数为65C.众数为62D.众数为64【答案】C【解析】∵由茎叶图得到所有数据从小到大排为∴中位数为,众数为故选C3.命题“”的否定是()A.不存在B.C.D.【答案】D【解析】命题的否定是故选D4.容量为100的样本,其数据分布在,将样本数据分为4组:,得到频率分布直方图如图所示,则下列说法不正确的是()A.样本数据分布在的频率为0.32B.样本数据分布在的频数为40C.样本数据分布在的频数为40D.估计总体数据大约有10%分布在【答案】D【解析】总体数据分布在的概率为故选D5.“”是“为椭圆方程”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若表示椭圆,则,且∴或者故是为椭圆方程的必要不充分条件故选B6.已知函数,若在上随机取一个实数,则的概率为()A.B.C.D.【答案】D【解析】令得,即,由几何概型性质可知概率故选D7.在平面内,已知两定点间的距离为2,动点满足.若,则的面积为()A.B.C.D.【答案】B【解析】由题可知点的轨迹为椭圆,且∵∴为等边三角形,边长为∴的面积为故选B8.在2023年3月15日,某物价部门对本市5家商场某商品一天的销售额及其价格进行调查,5家商场的价格与销售额之间的一组数据如下表所示:由散点图可知,销售额与价格之间有较好的线性相关关系,且回归直线方程是,则()A.B.35.6C.40D.40.5【答案】C【解析】由题可知∵∴故选C点睛:本题看出回归分析的应用,本题解题的关键是求出样本中心点,根据样本中心点代入求出的值,本题是一个基础题;求回归直线方程的一般步骤:①作出散点图(由样本点是否呈条状分布来判断两个量是否具有线性相关关系),若存在线性相关关系;②求回归系数;③写出回归直线方程,并利用回归直线方程进行预测说明.9.已知双曲线:的左焦点为,右顶点为,过点且垂直于轴的直线与双曲线相交于不同的两点.若为锐角三角形,则双曲线的离心率的取值范围为()A.B.C.D.【答案】A【解析】双曲线右顶点为,左焦点为,,过点作垂直于轴的直线与双曲线相交于两点,则∵若为锐角三角形,只要为锐角,即∴,即即∴故选A点睛:解决双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用双曲线的几何性质、点的坐标的范围等.10.阅读如图所示的程序,若执行循环体的次数为5,则程序中的取值范围为()A.B.C.D.【答案】D【解析】执行程序:;;;;,共执行了5次循环体,结束循环,所以.故选D.11.已知椭圆:的右焦点为,点在椭圆上,若点满足且,则的最小值为()A.3B.C.D.1【答案】C【解析】根据题意得:,又因为.所以.故选C.12.设抛物线:的焦点为,过点的直线与抛物线相交于不同的两点,与抛物线的准线相交于点,且.记与的面积分别为,则()A.B.C.D.【答案】A【解析】抛物线的焦点为F(,0),准线方程为x=−,分别过A.B作准线的垂线,垂足分别为D.E,连结AD、BE、AF.genju设,直线AB的方程为,与联立消去y,得,所以,∵|BF|=2,∴根据抛物线的定义,得|BF|=|BE|=+=3,解得=.由此可得,所以|AD|=+=,∵△CAD中,BE∥AD,∴.故选:A.点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.2.若为抛物线上一点,由定义易得;若过焦点的弦AB的端点坐标为,则弦长为可由根与系数的关系整体求出,本题就是由韦达定理得到;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.二、填空题(每题4分,满分20分,将答案填在答题纸上)13.若直线为双曲线的一条渐近线,则______.【答案】1【解析】∵双曲线∴∴渐近线方程为∵直线为双曲线的一条渐近线∴故答案为114.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数为_______.【答案】150【解析】试题分析:该校教师人数为2400×(人).考点:分层抽样方法.15.如图所示的程序框图的算法思路源于宋元时期数学名著《算法启蒙》中的“松竹并生”问题.若输入的的值分别为7,3,则输出的的值为_______.【答案】3【解析】输入进入循环,,不满足执行循环,,不满足执行循环,,满足,输出故答案为316.若经过坐标原点的直线与圆相交于不同的两点,则弦的中点的轨迹方程为_______.【答案】【解析】设当直线l的方程为,与圆联立方程组,消去y可得:,由,可得.由韦达定理,可得,∴线段AB的中点M的轨迹C的参数方程为,其中,∴线段AB的中点M的轨迹C的方程为:,其中.故答案为:.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0.(2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;(2)从甲、乙两袋中各取一球,求取出的两球颜色相同的概率.【答案】(1)(2).【解析】试题分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一只黑球一只红球的种数,根据概率公式计算即可;(2)分为同是黑色,红色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.试题解析:(1)将甲袋中的1只黑球,3只红球分别记为.从甲袋中任取两球,所有可能的结果有共6种.其中两球颜色不相同的结果有共3种.记“从甲袋中任取两球,取出的两球的颜色不相同”为事件,则∴从甲袋中任取两球,取出的两球的颜色不相同的概率为.(2)将甲袋中的1只黑球,3只红球分别记为,将乙袋中的2只黑球,1只红球分别记为从甲、乙两袋中各取一球的所有可能结果有共12种.其中两球颜色相同的结果有共5种记“从甲、乙两袋中各取一球,取出的两球的颜色相同”为事件,则∴从甲、乙两袋中各取一球,取出的两球的颜色相同的概率为.18.已知命题:若关于的方程无实数根,则;命题:若关于的方程有两个不相等的正实根,则.(1)写出命题的否命题,并判断命题的真假;(2)判断命题“且”的真假,并说明理由.【答案】(1)命题为真命题(2)命题“且”为真命题................试题解析:(1)解:命题的否命题:若关于的方程有实数根,则或.∵关于的方程有实根∴∵,化简,得,解得或.∴命题为真命题.(2)对于命题:若关于的方程无实数根,则化简,得,解得.∴命题为真命题.对于命题:关于的方程有两个不相等的正实根,有,解得∴命题为真命题∴命题“且”为真命题.19.阅读如图所示的程序框图,解答下列问题:(1)求输入的的值分别为时,输出的的值;(2)根据程序框图,写出函数()的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.【答案】(1)见解析(2).【解析】试题分析:(1)根据输入的的值为时,输出结果;当输入的的值为2时,输出结果;(2)根据程序框图,可得,结合函数图象及有三个互不相等的实数解即可求出实数的取值范围.试题解析:(1)当输入的的值为时,输出的;当输入的的值为2时,输出的(2)根据程序框图,可得当时,,此时单调递增,且;当时,;当时,在上单调递减,在上单调递增,且.结合图象,知当关于的方程有三个互不相等的实数解时,实数的取值范围为.20.已知以坐标原点为圆心的圆与抛物线:相交于不同的两点,与抛物线的准线相交于不同的两点,且.(1)求抛物线的方程;(2)若不经过坐标原点的直线与抛物线相交于不同的两点,且满足.证明直线过轴上一定点,并求出点的坐标.【答案】(1)(2)见解析【解析】试题分析:(1)由,得两点所在的直线方程为,进而根据长度求得;(2)设直线的方程为,与抛物线联立得,由得,进而利用韦达定理求解即可.试题解析:(1)由已知,,则两点所在的直线方程为则,故∴抛物线的方程为.(2)由题意,直线不与轴垂直,设直线的方程为,.联立消去,得.∴,,,∵,∴又,∴∴解得或而,∴(此时)∴直线的方程为,故直线过轴上一定点.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21.一网站营销部为统计某市网友2023年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如下表:若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”.已知“网购达人”与“网购探者”人数的比例为2:3.(1)确定的值,并补全频率分布直方图;(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日被评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.【答案】(1)见解析(2)见解析【解析】试题分析:(1)由频数之和为,“网购达人”与“网购探者”人数的比例为2:3,列出关于的方程组,由此能求出的值,并补全频率分布直方图;(2)根据频率分布直方图分别计算平均数和中位数,再与题设条件做比较,即可判断.试题解析:(1)由题意,得化简,得,解得∴补全的频率分布直方图如图所示:(2)设这60名网友的网购金额的平均数为,则(千元)又∵,,∴这60名网友的网购金额的中位数为1.5+0.3=1.8(千元)∵平均数,中位数,∴根据估算判断,该网店当日不能被评为“皇冠店”.22.已知动点到定点的距离和它到直线的距离的比值为常数,记动点的轨迹为曲线.(1)求曲线的方程;(2)若直线:与曲线相交于不同的两点,直线:()与曲线相交于不同的两点,且.求以为顶点的凸四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论