2023年人教版初中八年级数学上册14.1.4.2《单项式乘以多项式》同步训练习题_第1页
2023年人教版初中八年级数学上册14.1.4.2《单项式乘以多项式》同步训练习题_第2页
2023年人教版初中八年级数学上册14.1.4.2《单项式乘以多项式》同步训练习题_第3页
2023年人教版初中八年级数学上册14.1.4.2《单项式乘以多项式》同步训练习题_第4页
2023年人教版初中八年级数学上册14.1.4.2《单项式乘以多项式》同步训练习题_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

21世纪教育网精品试卷·第2页(共2页)2023年人教版初中八年级数学上册《单项式乘以多项式》同步训练习题(学生版)一.选择题1.(•黔东南州)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.3ab﹣ab=2ab C.a(a2﹣a)=a2 D.2.(春•岱岳区期末)如果长方体的长为3a﹣4,宽为2a,高为a,则它的体积是()A.3a2﹣4a B.a2 C.6a3﹣8a2 D.6a2﹣8a3.(秋•重庆校级月考)化简x(2x﹣1)﹣x2(2﹣x)的结果是()A.﹣x3﹣x B.x3﹣x C.﹣x2﹣1 D.x3﹣14.(秋•遂宁校级月考)若三角形的底边为2m+1,高为2m,则此三角形的面积为()A.4m2+2m B.4m2+1 C.2m2+m D.2m2+m5.(春•南海区校级期中)下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c6.(秋•鲤城区校级期末)三个连续的奇数,若中间一个为a,则它们的积为()A.a3﹣4a B.a3﹣6a C.4a3﹣a D.4a3﹣6a7.(秋•合浦县期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1 D.1二.填空题8.(春•南长区期中)计算(﹣a4)(6a3﹣12a2+9a)=,十边形的内角和是.2·1·c·n·j·y9.(春•胶南市校级月考)=.10.(秋•万载县校级月考)若(x2+ax+1)•(﹣ax3)的展开式中,不含有x4项,则3a﹣1的值为.2-1-c-n-j-y11.(春•富阳市校级期中)一个多项式与的积为x5y2﹣3x4y3﹣x3y4z,那么这个多项式为.【版权所有:21教育】12.(秋•江油市校级月考)通过计算图中所示的几何图形的面积,可表示的代数恒等式是.21教育名师原创作品13.(2011秋•淅川县期中)已知ab2=﹣3,则﹣ab(a2b5﹣ab3﹣b)=.三.解答题14.(秋•陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x2y﹣xy2﹣y3)(﹣4xy2).15.若(am+b)•2a3b4=2a7b4+2a3bn(a≠0,a≠1,b≠0,b≠1).求m+n的值.16.若(1+x4ya)•(﹣xby)2=x16y4+x2b•y2,求ab的值.17.(春•芦溪县期中)某同学在计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,那么正确的计算结果是多少?21世纪教育网版权所有

人教版八年级数学上册《单项式乘以多项式》同步训练习题(教师版)一.选择题1.(•黔东南州)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.3ab﹣ab=2ab C.a(a2﹣a)=a2 D.选:B.2.(春•岱岳区期末)如果长方体的长为3a﹣4,宽为2a,高为a,则它的体积是()A.3a2﹣4a B.a2 C.6a3﹣8a2 D.6a2﹣8a考点:单项式乘多项式;单项式乘单项式.21世纪教育网分析:直接利用单项式乘以多项式运算法则以及长方体体积公式得出即可.解答:解:由题意可得:它的体积是:(3a﹣4)×2a×a=6a3﹣8a2.故选:C.点评:此题主要考查了单项式乘以多项式,正确把握运算法则是解题关键.3.(秋•重庆校级月考)化简x(2x﹣1)﹣x2(2﹣x)的结果是()A.﹣x3﹣x B.x3﹣x C.﹣x2﹣1 D.x3﹣1考点:单项式乘多项式.21世纪教育网专题:计算题.分析:原式利用单项式乘多项式法则计算,去括号合并即可得到结果.解答:解:原式=2x2﹣x﹣2x2+x3=x3﹣x,故选B.点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.4.(秋•遂宁校级月考)若三角形的底边为2m+1,高为2m,则此三角形的面积为()A.4m2+2m B.4m2+1 C.2m2+m D.2m2+m考点:单项式乘多项式.21世纪教育网分析:直接利用三角形面积公式结合单项式乘以多项式运算法则求出即可.解答:解:∵三角形的底边为2m+1,高为2m,∴此三角形的面积为:×2m×(2m+1)=2m2+m.故选:C.点评:此题主要考查了单项式乘以多项式以及三角形面积求法,正确掌握三角形面积求法是解题关键.5.(春•南海区校级期中)下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.21世纪教育网分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.21教育网6.(秋•鲤城区校级期末)三个连续的奇数,若中间一个为a,则它们的积为()A.a3﹣4a B.a3﹣6a C.4a3﹣a D.4a3﹣6a考点:单项式乘多项式.21世纪教育网分析:三个连续的奇数,若中间一个为a,则另外两个是a﹣2,a+2,求积即可.解答:解:三个连续的奇数,若中间一个为a,则另外两个是a﹣2,a+2.则a(a﹣2)(a+2)=a3﹣4a.故选A.点评:本题考查了整式的乘法,理解三个连续奇数的关系是关键.7.(秋•合浦县期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1 D.1考点:单项式乘多项式.21世纪教育网分析:先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.21·cn·jy·com解答:解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选A.点评:本题考查的是单项式乘多项式,熟知单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加是解答此题的关键.二.填空题8.(春•南长区期中)计算(﹣a4)(6a3﹣12a2+9a)=﹣4a7+8a6﹣6a5,十边形的内角和是1440°.219.(春•胶南市校级月考)=﹣a2b3+a2b2﹣ab2.考点:单项式乘多项式.21世纪教育网分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:=﹣a2b3+a2b2﹣ab2.故答案为:﹣a2b3+a2b2﹣ab2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.10.(秋•万载县校级月考)若(x2+ax+1)•(﹣ax3)的展开式中,不含有x4项,则3a﹣1的值为0.考点:单项式乘多项式.21世纪教育网分析:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.先依据法则运算,展开式后,因为不含x4项,所以x4项的系数为0,再求a的值.www-2-1-cnjy-com解答:解:(x2+ax+1)(﹣ax3)=﹣ax5﹣a2x4﹣ax3,展开式中不含x4项,则a2=0,∴a=0.∴3a﹣1=1﹣1=0,故答案是:0.点评:本题考查了单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.11.(春•富阳市校级期中)一个多项式与的积为x5y2﹣3x4y3﹣x3y4z,那么这个多项式为﹣2x2+6xy+2y2z.21·世纪*教育网考点:单项式乘多项式.21世纪教育网专题:计算题.分析:根据题意列出关系式,利用多项式除单项式法则计算即可得到结果.解答:解:根据题意得:(x5y2﹣3x4y3﹣x3y4z)÷(﹣x3y2)=﹣2x2+6xy+2y2z.故答案为:﹣2x2+6xy+2y2z点评:此题考查了单项式乘多项式,根据题意列出正确的算式是解本题的关键.12.(秋•江油市校级月考)通过计算图中所示的几何图形的面积,可表示的代数恒等式是2a(a+b)=2a2+2ab.21*cnjy*com考点:单项式乘多项式.21世纪教育网分析:本题所给的图中,四个小图形的面积与大图形的面积相等,据此列出代数式即可解答.解答:解:由题意可知2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab.点评:本题考查了单项式与多项式相乘,用不同方法表示面积是解题的关键.13.(2011秋•淅川县期中)已知ab2=﹣3,则﹣ab(a2b5﹣ab3﹣b)=33.考点:单项式乘多项式;代数式求值.21世纪教育网专题:整体思想.分析:对所给的式子变形提取公因式b,使其中出现ab2的因式,然后利用整体代入法计算.解答:解:﹣ab(a2b5﹣ab3﹣b),=﹣ab2(a2b4﹣ab2﹣1),当ab2=﹣3时,原式=﹣(﹣3)[(﹣3)2﹣(﹣3)﹣1]=33;故填:33.点评:本题考查了提公因式法分解因式,提取公因式b出现已知条件的形式比较关键,灵活运用此法则,可简便运算.【来源:21cnj*y.co*m】三.解答题14.(秋•陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x2y﹣xy2﹣y3)(﹣4xy2).考点:单项式乘多项式;分式的乘除法.21世纪教育网分析:(1)先算乘方,再把除法转化成乘法,最后约分即可;(2)根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(1)()2÷(﹣)2=×=;(2)(x2y﹣xy2﹣y3)(﹣4xy2)=﹣3x3y3+2x2y4+xy5;点评:此题考查了单项式乘多项式和分式的乘除法,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.【出处:21教育名师】15.若(am+b)•2a3b4=2a7b4+2a3bn(a≠0,a≠1,b≠0,b≠1).求m+n的值.考点:单项式乘多项式.21世纪教育网分析:利用单项式与多项式相乘的运算法则求解即可.解答:解:∵(am+b)•2a3b4=2a7b4+2a3bn,∴2a3+mb4+2a3b5=2a7b4+2a3bn,∴3+m=7,n=5,解得m=4,n=5,∴m+n=4+5=9.点评:本题主要考查了单项式与多项式相乘的运算法则,解题的关键是熟记单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.16.若(1+x4ya)•(﹣xby)2=x16y4+x2b•y2,求ab的值.考点:单项式乘多项式.21世纪教育网分析:先利用单项式与多项式相乘的运算法则计算,再利用对应的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论