版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE初一数学全等三角形篇一:初一数学三角形与全等三角形知识点大全,经典练习-含答案初一数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形2)在实际运用中,已经两边,则第三边的取值范围为:两边之差lt;第三边lt;两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等三、多边形及其内角和1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角和:n边形内角和等于(n-2)1808、多边形的外角和:360度注:有些题,利用外角和,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线n(n-3)2条。全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)二、角的平分线:熟悉基本图形1、(性质)角的平分线上的点到角的两边的距离相等.2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”轴对称一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点4.轴对称的性质①关于某直线对称的两个图形是全等形。②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线熟悉基本图形比较区分角平分线模型1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x,y)关于x轴对称的点的坐标为______.点(x,y)关于y轴对称的点的坐标为______.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质①.等腰三角形的两个底角相等。(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。2、等边三角形的判定:①三个角都相等的三角形是等边三角形。②有一个角是600的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。4.直角三角形,斜边上的中线等于斜边的一半、全等三角形练习一、填空题(每小题2分,共20分)1.如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为,BD的对应边为.2.如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌△,理由是,△ABE≌(第1题)(第2题)(第4题)3.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是cm.4.如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC与B′C′边上的高,且AB=A′B′,AD=A′D′,若使△ABC≌△A′B′C′,请你补充条件5.若两个图形全等,则其中一个图形可通过平移、或与另一个三角形完全重合.6.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=___________度BANDMAECBCD(第6题)(第7题)(第8题)7.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,则DN+MN的最小值为__________.8.如图,在△ABC中,∠B=90o,D是斜边AC的垂直平分线与BC的交点,连结AD,若∠DAC:∠DAB=2:5,则∠DAC=___________.9.等腰直角三角形ABC中,∠BAC=90o,BD平分∠ABC交AC于点D,若AB+AD=8cm,则底边BC上的高为___________.10.锐角三角形ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=__________度.ACEHDBCBAD(第9题)(第10题)二、选择题(每小题3分,共30分)11.已知在△ABC中,AB=AC,∠A=56°,则高BD与BC的夹角为()A.28°B.34°C.68°D.62°12.在△ABC中,AB=3,AC=4,延长BC至D,使CD=BC,连接AD,则AD的长的取值范围为()A.1<AD<7B.2<AD<14C.<AD<.5<AD<11篇二:七年级下数学全等三角形试题七年级下数学全等三角形测试题(5月24日)△ADB≌△EDB≌△EDC,则∠C的度数为()一、选择(每题3分,共30分)1、下列说法正确的是()A全等三角形是指形状相同的两个三角形B全等三角形的周长和面积分别相等C全等三角形是指面积相等的两个三角形D所有的等边三角形都是全等三角形2、如下图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A:2B:3C:5D:3.如图,AC、BD相交于点O,OA=OC,OB=OD,则图中全等三角形有()(A)2对(B)3对(C)4对(D)5对AEFEACBD(第7(第2题)BC4、如图:EA∥DF,AE=DF,要使△AEC≌△DBF,则只要()A:AB=CDB:EC=BFC:∠A=∠DD:AB=BC5、根据下列条件,能唯一画出△ABC的是()A。AB=3,BC=4,AC=8B。AB=4,BC=3,∠A=30°C。∠A=60°,∠B=45°,AB=4D。∠C=90°,AB=66、能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E7、如下左图所示,在△ABC中,D、E分别是边AC、BC上的点,若°°°°8、如图:在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC。其中正确的个数有()A:1个B:2个CA:3个D:4个ADBECFE9、如上右图第3题,已知在△(第6题)AC,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A、90°-∠AB、90°-1∠AC、180°-∠AD、45°-122∠A10、已知△ABC与△DEF全等,∠A=∠D=90°,∠B=37°,则∠E的度数是()A、37°B、53°C、37°或63°D、37°或53°二、填空(每题3分,共30分)1、如下左图AB,CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是;2.如下中图,若△ABC≌△ADE,∠EAC=35°,则∠BAD=_________度.3、如下右二图:AB=AC,BD=CD,若∠B=28°则∠C=;ADACBODMD(第19题)BAB(第11题)CBC图1图24.如上右图,沿AM折叠,使D点落在BC上的N点处,如果AD=7cm,1、(6分)如图:AC=DF,AD=BE,BC=EF。求证:∠C=∠F。DM=5cm,∠DAM=300,则AN=cm,NM=cm,∠NAM=.是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是____;中线AD的取值范围是____.6.如下左一图,△ABC≌△AED,∠C=85°,∠B=30°,则∠7、如下左二图:在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=;OACDBD(第15题)EC12AB2、(6分)已知:如图13-4,AE=AC,8、如上右二图:在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC求证:△EAD≌△CAB.交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上。正确的是;(填序号)9、如上右一图,∠ABC=∠DCB=70°,∠ABD=40°,AB=DC,则∠BAC=()°°°°A10、如图:在△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,∠B=40°,∠BAC=82°,则∠DAE=()BDC三、解答题:(第5题)ADBCEFAD=AB,∠EAC=∠DAB,A图13-4B3、(7分)如图,AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。求证:AM是△ABC的中线。AFMB9)CE4.(7分)已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。5.(8分)如图,已知AD、BC相交于点O,AB=CD,AD=CB.求证;∠B=∠DCD6(8分)如图(4):AB=AC,AD=AE,AB⊥AC,AD⊥AE。求证:(1)∠B=∠C,(2)BD=CEEDA(图4)CB7、(8分)如图在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任一点。求证:PA=PD。B2PAD3411)8、(10分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。求证:(1)AD=AG,(2)AD与AG的位置关系如何。AGFEBC篇三:人教版初中数学全等三角形证明题(经典50题)人教版初中数学全等三角形证明题(经典50题)(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解析:延长EBDB中,AB-BElt;AElt;AB+BE即D即:10-2lt;2ADlt;10+24lt;ADlt;6又AD是整数,则AD=52.已知:D是AB中点,∠ACB=90°,求证:3.∠E,∠C=∠D,F是CD中点,求证:∠1=∠2BC=ED,CF=DF,∠BCF=∠EDF。所以三角形BCF)。所以BF=EF,∠CBF=∠DEF。连接BE。在三所以∠EBF=∠BEF。又因为∠ABC=∠AED。所以∠AB=AE。在三角形ABF和三角形AEF中,∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。所以三角形所以∠BAF=∠EAF(∠1=∠2)。4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE(AAS)∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CAE=AB,连接ED∵AD平分∠BAC∴∠EAD=∠BAD又⊿AED≌⊿ABD(SAS)∴∠AED=∠B,∴BDE=DB∵AC=AB+BDAC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF因为CE⊥AB所以∠CEB=∠CEF=90°因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE12.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。证明:在BC上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C证明:AB//ED,AE//BD推出AE=BD,又有AF=CD,EF=BC所以三角形AEF全等于三角形DCB,所以:∠C=∠F14.已知:AB=CD,∠A=∠D,求证:∠B=∠C证明:设线段AB,CD所在的直线交于E,(当ADlt;BC时,E点是射线BA,CD的交点,当ADBC时,E点是射线AB,DC的交点)。则:△AED是等腰三角形。所以:AE=DE而AB=CD所以:BE=CE(等量加等量,或等量减等量)所以:△BEC是等腰三角形所以:角B=角C.是∠BAC平分线AD上一点,ACAB,求证:PC-PBlt;AC-AB证明:作B关于AD的对称点B‘,因为AD是角CBAC的平分线,B#39;在线段AC上(在AC中间,因为AB较短)因为PClt;PB’+B‘C,PC-PB’lt;B‘C,而B#39;C=AC-AB#39;=AC-AB,所以PC-PBlt;AC-ABAPD16.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证明:∠BAC=180-(∠ABC+∠C=180-4∠C∠1=∠BAC/2=90-2∠C∠ABE=90-∠1=2∠C延长BE交AC于F因为,∠1=∠2,BE⊥AE所以,△ABF是等腰三角形AB=AF,BF=2BE∠FBC=∠ABC-∠ABE=3∠C-2∠C=∠CBF=CFAC-AB=AC-AF=CF=BF=2BE17.已知,E是AB中点,AF=BD,BD=5,AC=7,求DCC证明:作AG∥BD交DE延长线于GAGE全等BDEAG=BD=5AGF∽CDFAF=AG=5所以DC=CF=218.(5分)如图,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解除建设合同协议
- 公司对公短期借款合同格式
- 灯具供应协议
- 英文版设备采购合同
- 家居家具选购合同
- 质量保证书质量领先服务至上
- 聘用合同补充协议样本
- 严谨作风自觉加班
- 服务推广合作合同书
- 招标前期物业服务合同
- GB/T 30595-2024建筑保温用挤塑聚苯板(XPS)系统材料
- 2024年初中七年级英语上册单元写作范文(新人教版)
- 新编苏教版一年级科学上册实验报告册(典藏版)
- 医学免疫学-医学检验专业学习通超星期末考试答案章节答案2024年
- 独立基础土方开挖施工方案
- 【基于单片机的电子密码锁设计(论文)10000字】
- 肿瘤病人常见症状护理
- 瑜伽基础知识题库单选题100道及答案解析
- 广东省广州市2024年中考数学真题试卷(含答案)
- 2024年资格考试-注册质量经理考试近5年真题附答案
- 浙江省台州市2023-2024学年七年级上学期期末数学试题(含答案)
评论
0/150
提交评论