版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/1用STOKES定律解释尺寸分离效应ANINVESTIGATIONINTOTHEEFFICIENCYOFPARTICLESIZE
SEPARATIONUSINGSTOKES'LAW
JULIANCLIFTON1*,PAULMCDONALD2,ANDREWPLATER3ANDFRANKOLDFIELD4
1
DepartmentofGeography,UniversityofPortsmouth,BuckinghamBuilding,LionTerrace,Portsmouth,PO13HE,UK2
EnvironmentalSciences,WestlakesScientificConsultingLtd,PrincessRoyalBuilding,MoorRow,Cumbria,CA243JZ,UK
3
DepartmentofGeography,UniversityofLiverpool,RoxbyBuilding,POBox147,L693BX,UK
4
PAGESProject,Barenplatz2,CH-3011Bern,Switzerland
Received7August1998;Revised16November1998;Accepted20January1999
ABSTRACT
Theaccuracyofgravimetricfractionationasameansofobtainingsizefractionsfrommarinesedimentshasbeenexplored.Analysisoftheparticlesizedistributionandsedimentpropertiesoffractionsobtainedusingthismethodwasundertaken.Thishashighlightedtheextenttowhichexperimentalartefactsratherthanvariationsinsedimentcharacteristicsmayadverselyaffecttheefficiencyofthefractionationprocess.Copyright#1999JohnWileylasergranulometry
INTRODUCTION
Tracemetalsandradionuclidesarepresentingreaterconcentrationsinassociationwithfine-grainedparticlesasaresultofthegreatersurfaceareaavailableforadsorption,thisrelationshipbeingwelldocumentedinbothmarineandterrestrialenvironments(Ackermann,1983;Assinderetal.,1993).Arangeoftechniqueshasthereforebeendevelopedtophysicallyseparatesedimentinthesiltandclayrange(b40;`63"m)onasize-specificbasisinordertostudythedistributionandfateofadsorbedcontaminants.Theseincludecentrifugation(DucaroirandLamy,1995),elutriation(HorowitzandElrick,1986;WallingandWood-ward,1993),heavy-liquidflotation(Cotter-Howells,1993),magneticseparation(Bulmanetal.,1984)andsieving(Mundschenk,1996).Gravimetricsettlingis,however,themostcommonlyemployedmethod;itinvolvesremovalofaspecificvolumeofmaterialsettlinginsuspensionwhich,accordingtoStokes'Law,shouldcontainparticlesfinerthanaspecificdiameter,therebyallowingremovaloffractionsatpredeterminedsizeclassintervals.Thismethodallowssizefractionstobequicklyobtainedandinvolvesminimalcapitaloutlay,leadingtoitswidespreaduseinstudiesoftraceelementdistribution(LivensandBaxter,1988;CundyandCroudace,1995;HeandWalling,1996).
However,theassumptionsimplicitwithinStokes'Law,thatsphericalgrainsofaknownuniformdensityaresettlingfreelyinnon-turbulentfluidofaconstanttemperature,willevidentlyseldombemetevenunderlaboratoryconditions,leadingtoalongstandingdebateontheefficiencyofthesettlingprocedure(Gibbs,1972).However,itisonlyrecentlythatadvancesinlasergranulometryasaparticlesizingtechniquehavepermittedtheaccurateanalysisofsizefractionsobtainedusingthesettlingtechnique(WaldenandSlattery,1993).Thepresentstudyaimstofollowupthisresearchthroughadetailedexaminationofsizefractionsobtainedfrommarinesedimentsandoftheextenttowhichpropertiessuchassedimentdensityandorganiccarboncontentmayinfluencetheobservedgrainsizedistribution.
EarthSurfaceProcessesandLandforms
Earthhttp://./doc/a65ec1444b73f242336c5f95.htmlndforms24,725±730(1999)
*Correspondenceto:DrJ.Clifton,DepartmentofGeography,UniversityofPortsmouth,BuckinghamBuilding,LionTerrace,Portsmouth,PO13HE,UK.E-mail:cliftonj@http://./doc/a65ec1444b73f242336c5f95.htmlContract/grantsponsor:BNFL
MATERIALSANDMETHODS
EightlocationsintheeasternIrishSea,representingadiversesuiteoffine-grainedsaltmarshandintertidalmudflatenvironments,werevisitedinMarch1995(Figure1).Approximately1kgofsurfacesedimentwassampledtoadepthof10mmateachsiteandfrozenwithin48hoursofcollection.
Representativesub-samplesweighingapproximately50gweretakenfromeachsampleandsuspendedin300mlofdistilledwater.Theseweredispersedthroughtheadditionof20mlaliquotsofCalgonsolution,followingwhichthesampleswereplacedinanultrasonicbathfor30minandwet-sievedat40.
Thedensityofthesedimentfinerthan40obtainedfromeachsamplewasdeterminedpriortofractionationinordertocalculatesettlingtimesreflectingvariationsinsedimentcomposition.TheSoilSurveymethod(AveryandBascomb,1974)wasusedforthispurpose,inwhichsedimentdensityiscalculatedusingthedifferenceinvolumebetweenaflaskfilledwithdistilledwatercontainingaknownmassofdrysedimentandthevolumeofthesameflaskcontainingdistilledwateralone.Theprecisionofthistechniquewasverifiedthroughduplicatemeasurementsofallsamples,whichyieldedresultswithin5percentoftheoriginaldata.Thesedimentfinerthan40fromeachsamplewasagaindispersedfollowingtheaboveprocedureanddecantedintoindividualglasssettlingtubes(140cm?15cm),maintainingaparticleconcentrationof
less
Figure1.SamplinglocationsintheeasternIrishSea
726
J.CLIFTONETAL.
PARTICLESIZESEPARATION727than1percentbyvolumeinordertominimizeparticlecollisionsduringthefractionationprocess(Galehouse,1970).
Immediatelypriortosizefractionation,eachtubewasshakenendoverendfor2mintofullydispersethesediment.Followingpredeterminedsettlingtimes,aperistalticpumpwasusedtoremovethetopmost10cmofsuspension;thistechniqueallowedminimaldisturbancetothesettlingsuspension.Eachtubewasthentoppedupto1000mlwithdistilledwaterandtheoperationrepeateduntilthesuspensionwithdrawnbecameclear,indicatingthatcompleteremovalofeachfractionhadbeenachieved.Thetemperatureofthesuspensioninallsettlingtubesrangedfrom18to21Cduringtheexperiment.
Sizefractionswithdrawnusingthisprocedurewereanalyseddirectlywithnofurtherpretreatmentinordertodeterminethegrainsizedistributionofeachfraction.Aminimumoffourmeasurementsofeachsizefractionwithdrawnwascarriedoutduringthesettlingprocessinordertodetectanytemporalchangesingrainsizedistribution.AMalvernMastersizerSlasergranulometerconfiguredtoanalysesedimentinthe0á1±140(900±0á05"m)rangeinonemeasurementwasusedforallparticlesizeanalyses.Whilstearliergenerationsofthisinstrumenthavebeencriticallyevaluated(Syvitskietal.,1991),nocomparativeassessmentofthismodelhasyetbeenmade.However,thedifferencebetweenthemeasuredandnominaldiameteroffivestandardreferencematerialsrangingfrom2á01"mto202"mwaslessthan5percent(Clifton,1998),indicatinganacceptabledegreeofinstrumentalaccuracy.Thelasergranulometercalculatesthepercentageofsedimentfoundtolieinsuccessivesizeclasses.Precisionofmeasurementwasthereforeensuredthroughundertakingduplicateanalysesofeachsampleuntiltheproportionofsedimentrecordedineachsizeclassdifferedbylessthan1percent.
Sizefractionsweredriedat40CandorganiccarboncontentmeasuredfollowingthemodifiedwetoxidationprocedureasdescribedbyLoringandRantala1992.Referencematerialswereutilizedtocalibrateindividualbatchesofsamples,allowingastandarddeviationof0á045percenttobeappliedtoallorganiccarbondata.
Statisticalanalyseswereundertakenusingthenon-parametricSpearmanrankcorrelationtestinordertoidentifyanyrelationshipsbetweenmeasuredsedimentpropertiesandsizedistributioncharacteristics.Thistestwasselectedastheassumptionsofnormalityimplicitintheuseofparametricstatisticaltestscouldnotbeensured.
RESULTSANDDISCUSSION
Density
Themeasureddensityvaluesrangedbetween1á66and2á99gcmà3,whichservestohighlighttheextenttowhichtheassumptionofaconstantsedimentdensitymayadverselyaffecttheaccuracyofgravimetricfractionation.Despitethewiderangeinorganiccarboncontentmeasuredpriortofractionation(0á95±5á47percent),nocorrelationwithsedimentdensitywasevident(rs=à0á1,&=b0á05).Mineralogicaldifferencesreflectingthediverseoriginofthesesamplesmay,therefore,exertthedominantinfluenceupondensity.
Monitoringofparticlesizedistributions
TableIindicatesthatthemeangrainsizeoffractionsobtainedfromallsamplesusingthisprocedurewaswithintherequiredsizerange.Furthermore,notemporaltrendinmeangrainsizecouldbeidentified.Thisimpliesthatthesizedistributionofsamplesobtainedviafractionationisnotdependentuponsedimentconcentration.Therefore,flocculationwasnotasignificantfactoraffectingfractionationinthisexperiment,asparticleaggregationathighersedimentconcentrationswouldbemanifestinanincreaseinthemeangrainsizeofsedimentremovedintheinitialstagesoffractionation.
Efficiencyofsizefractionationprocedure
TableIIsummarizestheefficiencyofthefractionationprocedureusingdatafromparticlesizeanalysesofallindividualfractions.Thisrevealsthattheproportionofsedimentlyinginthedesiredsizerangeineach
fractionvariedfrom26to65percentbyvolume,indicatingthattheefficiencyofsizefractionationusingthismethodisfarfromideal.Whilstthemagnitudeofthestandarddeviationvaluesindicatessomevariationbetweensamples,recoveryofsedimentinthe5±70rangeisleastefficient,withthepercentageofsedimentwithintherequiredsizerangebeinglessthanthatinthecoarseorfinetailsofthedistribution.Thefractionfinerthan90isassociatedwiththemaximumabundanceofsedimentwithintherequiredrangeasthereisnolowersizelimittothisfraction.
Figure2illustratesatypicalexampleofthegrainsizedistributionoffractionsobtainedbythegravimetricseparationprocedure.Thisdemonstratesthatallsizefractionsobtainedusingthismethodexhibitdistinctmodalpeakswhichareseparatedbyatleastonephiunit,indicatingthatthesettlingprocedureemployeddoesyieldqualitativelydifferentsizefractions.Thisalsoclarifiesthenatureofthecoarseandfinetailsofthesizefractions.Afinetailcomposedofsedimentfinerthan80isrecordedinsizefractionstheoreticallycontainingnomaterialfinerthan70.Furthermore,despitethepreliminarywet-sievingundertaken,materialcoarserthan40isevidentinmostsizefractionsfromallsamples,accountingforalmostone-thirdofthe4±50fractionintheexampleillustrated.
Despitethefactthatsedimentdensityisrecognizedasavariablepropertyinthisstudy,theefficiencyofthisproceduredoesnotrepresentasignificantimprovementuponpreviousfractionationexperimentsusingagriculturaltopsoilsandglacialsediments(WaldenandSlattery,1993).Thisimpliesthatcommondrawbacksmayexistingravimetricsettlingprocedureswhichmeritdiscussion.Thepresenceofafinetailextendingto120reflectsthefactthat,incommonwithpreviousworkers(OldfieldandYu,1994),completeremovalofthefinerfractionswasnotachievedinthisstudy,asthesuspensionbeingwithdrawnduringthefractionationproceduredidnotbecomeclearafteratotaloftenindividualwithdrawals.Itwasthereforeimpossibletoexcludesmallamountsoffiner-grainedmaterialinsuccessivesizefractions.Thishasparticularlysignificantimplicationswithregardtointerpretingpollutantdatafromanalysisofsizefractionsobtainedusingthismethod.
Discreteparticlesoforganicmatterhavebeenconsideredtogiverisetocoarsetailsinsizefractionsowingtothelowerdensityoforganicmatterand,hence,settlingvelocity(BarbantiandBothner,1993).However,despitethewiderangeoforganiccarboncontentinsizefractionsmeasuredinthisstudy(0á07±8á01percent),TableIIIindicatesthattheabundanceofcoarsetailsinsizefractionsisnotrelatedtoorganiccarboncontent.
TableI.Rangeofmeangrainsizesmeasuredinsizefractionsfromallsamples
Sizefraction
(phi)4±55±66±77±9b9("m)
32±6316±328±162±8`2Meangrainsize(0)
4á0±4á1
5á4±5á7
5á8±6á0
6á4±6á9
8á8±9á1
TableII.Averagepercentageofsedimentbyvolumecoarser,withinand?nerthanrequiredsizerangemeasuredinsize
fractionsfromallsamples
Sizefraction
(phi)4±55±66±77±9b9("m)32±6316±328±162±8`2%coarser28á424á034á234á235á0%?1'12á99á211á117á613á1%within45á131á326á340á765á0%?1'11á78á13á86á913á1%?ner26á544á939á625á1±%?1'
22á6
16á1
13á5
18á3
±
728
J.CLIFTONETAL.
Thislackofcorrelationisinagreementwithevidencethatorganicmatterispredominantlypresentintheformofcoatingsonfine-grainedsedimentinthemarineenvironmentratherthanasindividualparticles(Mayer,1994).
ThecoarsetailsillustratedinFigure2maythereforereflectcertaininherentphysicaldrawbacksassociatedwiththismethod.Itwasnotedthatturbulencewithintheupper10cmofthesettlingtubepersistedforatleast20saftershakingthetubetoensureadequatesedimentdispersalpriortofractionation,therebydelayingtheonsetofverticalsettlingandgivingrisetothecoarsetailsobservedinFigure2.Furthermore,whilst
the
Figure2.Grainsizedistributionofsizefractionsobtainedfromsample1
TableIII.Rankcorrelationcoef?cientsbetweenpercentageofmaterialbyvolumecoarserthanrequiredsizerangeandorganiccarboncontentofsizefractionsfromallsamples.Noneare
signi?cantat5percentcon?dencelevel
Sizefraction
(phi)4±55±66±77±9b9("m)32±6316±328±162±8`2rscoef?cient
à0á64
à0á63
à0á19
à0á02
0á12
PARTICLESIZESEPARATION
729
730J.CLIFTONETAL.
accuracyoflasergranulometryisnotconsideredtobesignificantlyaffectedbyvariationsinparticleshape(Matthews,1991),non-streamlineddistortionsofparticleshapewillservetoreduceparticlesettlingvelocity,whichmayfurthercontributetothepresenceofcoarsetailsinsizefractionsobtainedusingthistechnique.Whilstthepresenceofcoarsetailsisundesirable,thesewillbeofrelativelylittleimportancewithregardtostudiesofcontaminantconcentrationsinparticlesizefractionsincomparisontothefinetailsnotedpreviously.Recentworkhasdemonstratedstrongcorrelationsbetweentheabundanceoffine-grainedsedimentandvariousmineralmagneticpropertiesinintertidalsediments(Clifton,1998;OldfieldandYu,1994).Giventheshortcomingsofgravimetricprocedureshighlightedinthepresentstudy,itisrecommendedthatnormalizationusingsedimentmagneticpropertiesisundertakeninstudieswhichutilizeanalysisofparticlesizefractionstoinferthegeochemicalbehaviouroftracemetalsorradionuclides.
ACKNOWLEDGEMENTS
TheauthorswouldliketoacknowledgethesupportofBNFLforthisproject.
REFERENCES
Ackermann,F.1983.`Monitoringofheavymetalsincoastalandestuarinesediments±aquestionofgrainsize:`20"mversus`60"m.EnvironmentalTechnologyLetters,4,317±328.
Assinder,D.J.,Yamamoto,M.,Kim,C.K.,Seki,R.,Takaku,Y.,Yamauchi,Y.,Igarishi,S.,Komura,K.andUeno,K.1993.RadioisotopesofthirteenelementsinintertidalcoastalandestuarinesedimentsintheIrishSea.JournalofRadioanalyticalandNuclearChemistry,170,333±346.
Avery,B.W.andBascomb,C.L.1974.SoilSurveyLaboratoryMethods.Harpenden,95pp.
Barbanti,A.andBothner,M.H.1993.`Aprocedureforpartitioningbulksedimentsintodistinctgrain-sizefractionsforgeochemicalanalysis',EnvironmentalGeology,21,3±13.
Bulman,R.A.,Johnson,T.E.andReed,A.L.1984.`Anexaminationofnewproceduresforfractionationofplutoniumandamericium-bearingsediments',ScienceoftheTotalEnvironment,35,239±250.
Clifton,J.1998.RelationshipsbetweenradionuclideactivityandsedimentcompositionineasternIrishSeaintertidalsediments.PhDthesis,UniversityofLiverpool.
Cotter-Howells,J.1993.`Separationofhighdensitymineralsfromsoil',ScienceoftheTotalEnvironment,132,93±98.Cundy,A.B.andCroudace,I.W.1995.`Physicalandchemicalassociationsofradionuclidesandtracemetalsinestuarinesediments:anexamplefromPooleHarbour,southernEngland',JournalofEnvironmentalRadioactivity,29,191±211.
Ducaroir,J.andLamy,I.1995.`Evidenceoftracemetalassociationwithsoilorganicmatterusingparticlesizefractionationafterphysicaldispersiontreatment',Analyst,120,741±745.
Galehouse,J.S.1970.`Sedimentationanalysis',inCarver,R.E.(Ed.),ProceduresinSedimentaryPetrology,Wiley,Chichester,69±94.
Gibbs,R.J.1972.`Theaccuracyofparticlesizeanalysesusingsettlingtubes',JournalofSedimentaryPetrology,42,141±145.He,Q.andWalling,D.E.1996.`Interpretingparticlesizeeffectsintheadsorptionof137Csandunsupported210Pbbymineralsoilsandsediments',JournalofEnvironmentalRadioactivit
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年脂质体载体材料项目综合评估报告
- 2023年单相电能表项目综合评估报告
- 2024至2030年中国绿化素数据监测研究报告
- 2024至2030年中国砂洗细帆布女式风衣行业投资前景及策略咨询研究报告
- 2024至2030年中国环氧溴丙烷行业投资前景及策略咨询研究报告
- 2024至2030年中国海锚行业投资前景及策略咨询研究报告
- 2024至2030年中国快固化无溶剂浸渍树脂数据监测研究报告
- 2018-2024年乌鲁木齐房地产市场研究与市场分析预测报告(目录)
- 内蒙古呼伦贝尔市(2024年-2025年小学五年级语文)人教版课后作业((上下)学期)试卷及答案
- 更换卷帘门电机合同范例
- 初中物理教学中如何培养学生核心素养
- 解决员工冲突和问题的方法
- 小学二年级综合实践二单元第3课《纸陀螺》课件
- 城市排水管网收益计算方法
- 伤口评估(测量)专项考核试题及答案
- 飞机总体设计设计过程及算例
- 矿山开采与环境保护
- 健康管理解决方案
- 质子泵抑制剂用药参考汇总
- 初三化学半期考试总结(实用十五篇)
- 认识飞机(课堂PPT)
评论
0/150
提交评论