版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/1物理高中知识点总结(通用9篇)
(2)表达式:×109N?m2/C2——静电力常量(3)适用条件:真空中静止的点电荷。
1、电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。(1)三种带电方式:摩擦起电,感应起电,接触起电。
(2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,×10-19C——密立根测得e的值。
物理知识点二、电场能的性质
1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。
2、电势φ(1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。
(2)定义式:φ——单位:伏(V)——带正负号计算(3)特点:
○1电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。
○2电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。
○3电势的大小由电场本身决定,与Ep和q无关。
○4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。
(4)电势高低的判断方法○1根据电场线判断:沿着电场线电势降低。φA>φB○2根据电势能判断:
正电荷:电势能大,电势高;电势能小,电势低。
负电荷:电势能大,电势低;电势能小,电势高。
结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。
物理知识点3、电势能Ep(1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。
(2)定义式:——带正负号计算(3)特点:
○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。
○2电势能的变化量△Ep与零势能面的选择无关。
物理知识点4、电势差UAB(1)定义:电场中两点间的电势之差。也叫电压。
(2)定义式:UAB=φA-φB(3)特点:
○1电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBAR真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA[或Rx>(RARV)1/2]选用电路条件RxRx便于调节电压的选择条件Rp<Rx
物理高中知识点总结第4篇力是物体对物体的作用。⑴力不能脱离物体而独立存在。⑵物体间的作用是相互的。
力的三要素:力的大小、方向、作用点。
力作用于物体产生的两个作用效果。使受力物体发生形变或使受力物体的运动状态发生改变。
力的分类:
⑴按照力的性质命名:重力、弹力、摩擦力等。
⑵按照力的作用效果命名:拉力、推力、压力、支持力、动力、阻力、浮力、向心力等。
5、重力(A)
重力是由于地球的吸引而使物体受到的力
⑴地球上的物体受到重力,施力物体是地球。⑵重力的方向总是竖直向下的。
重心:物体的各个部分都受重力的作用,但从效果上看,我们可以认为各部分所受重力的作用都集中于一点,这个点就是物体所受重力的作用点,叫做物体的重心。
①质量均匀分布的有规则形状的均匀物体,它的重心在几何中心上。
②一般物体的重心不一定在几何中心上,可以在物体内,也可以在物体外。一般采用悬挂法。
重力的大小:G=mg
6、弹力(A)
弹力
⑴发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。
⑵产生弹力必须具备两个条件:①两物体直接接触;②两物体的接触处发生弹性形变。
弹力的方向:物体之间的正压力一定垂直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。
弹力的大小:弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大.
弹簧弹力:F=Kx(x为伸长量或压缩量,K为劲度系数)
相互接触的物体是否存在弹力的判断方法:如果物体间存在微小形变,不易觉察,这时可用假设法进行判定.
物理高中知识点总结第5篇力学部分:
1、基本概念:
力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速
2、基本规律:
匀变速直线运动的基本规律(12个方程);
三力共点平衡的特点;
牛顿运动定律(牛顿第一、第二、第三定律);
万有引力定律;
天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);
动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);
动量守恒定律(四类守恒条件、方程、应用过程);
功能基本关系(功是能量转化的量度)
重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);
功能原理(非重力做功与物体机械能变化之间的关系);
机械能守恒定律(守恒条件、方程、应用步骤);
简谐运动的基本规律(两个理想化模型一次全振动四个过程五个量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;
简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;
3、基本运动类型:
运动类型受力特点备注
直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析
匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动
2.匀减速直线运动
曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向
合外力指向轨迹内侧
(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解
匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心
(合外力充当向心力)一般圆周运动的受力特点
向心力的受力分析
简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析
4、基本:
力的合成与分解(平行四边形、三角形、多边形、正交分解);
三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);
对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);
处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);
解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);
针对简谐运动的对称法、针对简谐波图像的描点法、平移法
5、常见题型:
合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。
斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。
动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。
竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。
人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。
动量机械能的综合题:
(1)单个物体应用动量定理、动能定理或机械能守恒的题型;
(2)系统应用动量定理的题型;
(3)系统综合运用动量、能量观点的题型:
①碰撞问题;
②爆炸(反冲)问题(包括静止原子核衰变问题);
③滑块长木板问题(注意不同的初始条件、滑离和不滑离两种情况、四个方程);
④子弹射木块问题高中英语;
⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);
⑥单摆类问题:
⑦工件皮带问题(水平传送带,倾斜传送带);
⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);
机械波的图像应用题:
(1)机械波的传播方向和质点振动方向的互推;
(2)依据给定状态能够画出两点间的基本波形图;
(3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;
(4)机械波的干涉、衍射问题及声波的多普勒效应。
电磁学部分:
1、基本概念:
电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速
2、基本规律:
电量平分原理(电荷守恒)
库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)
电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)
电场力做功的特点及与电势能变化的关系
电容的定义式及平行板电容器的决定式
部分电路欧姆定律(适用条件)
电阻定律
串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)
焦耳定律、电功(电功率)三个表达式的适用范围
闭合电路欧姆定律
基本电路的动态分析(串反并同)
电场线(磁感线)的特点
等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点
常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)
电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、)
电动机的三个功率(输入功率、损耗功率、输出功率)
电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)
安培定则、左手定则、楞次定律(三条表述)、右手定则
电磁感应的判定条件
感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线
通电自感现象和断电自感现象
正弦交流电的产生原理
电阻、感抗、容抗对交变电流的作用
变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)
3、常见仪器:
示波器、示波管、电流计、电流表(磁电式电流表的原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。
4、实验部分:
(1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;
(2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);
(3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);
(4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);
(5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);
(6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);
(7)用多用电表测电阻及黑箱问题;
(8)练习使用示波器;
(9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;
(10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)
5、常见题型:
电场中移动电荷时的功能关系;
一条直线上三个点电荷的平衡问题;
带电粒子在匀强电场中的加速和偏转(示波器问题);
全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);
电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);
通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);
通电导线在匀强磁场中的平衡问题;
带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何求解;在有界磁场中的运动时间);
闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;
两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);
带电粒子在复合场中的运动(正交、平行两种情况):
①.重力场、匀强电场的复合场;
②.重力场、匀强磁场的复合场;
③.匀强电场、匀强磁场的复合场;
④.三场合一。
物理高中知识点总结第6篇动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}
动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}
非弹性碰撞Δp=0;0<ΔEK<ΔEKm{ΔEK:损失的动能,EKm:损失的最大动能}
完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}
物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)
由9得的推论等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
物理高中知识点总结第7篇(1)长度的测量
1:测量原则(1)为避免读数出错,三种测量器具(包括毫米刻度尺)均应以mm为单位读数!(2)用游标尺或螺旋测微器测长度时,均应注意从不同方位多测量几次,读平均值。(3)尺应紧贴测量物,使刻度线与测量面间无缝隙。
2:实验原理
游标卡尺
(1)10分度的卡尺,游标总长度为9mm,分成10等份,每等份为,每格与主尺最小分度差;20分度的卡尺,游标总长度为19mm,分成20等份,每等份为19/20mm,每格与主尺最小分度差(即二十分子一)mm;50分度的卡尺,游标总长度为49mm,分成50等份,每等份为49/50mm,每格与主尺最小分度差(即1/50)mm;
(2)读数方法:以洲标尺的零刻线对就位置读出主尺上的整毫米数,再读出洲标尺上的第几条线一心尽的某条线重合,将对齐的洲标尺刻度线数乘以该卡尺的精确度(即总格的倒数),将主尺读数与游标读数相加即得测量值。
螺旋测微器
(1)工作原理:每转一周,螺杆运动一个螺距,将它等分为50等份,则每转一份即表示,故它精确到即千分之一厘米,故又叫千分尺。
(2)读数方法:先从主尺上读出露出的刻度值,注意主尺上有整毫米和半毫米两行刻线,不要漏读半毫米值。再读可动刻度部分的读数,看第几条刻度线与主尺线重合(注意估读),乘以即为可动读数,再将固定与可动读数相加即为测量值。注意:螺旋测微器读数如以mm为单位,小数点后一定要读够三位数字,如读不够,应以零来补齐。
注意事项:(1)游标卡尺读数时,主尺的读数应从游标的零刻度处读,而不能从游标的机械末端读。(2)游标尺使用时,不论多少分度都不用估读20分度的读数,末位数一定是0或5;50分度的卡尺,末位数字一定是偶数。(3)若游标尺上任何一格均与主尺线对齐,选择较近的一条线读数。(4)螺旋测微器的主尺读数应注意半毫米线是否露出。(4)螺旋测微器的可动部分读数时,即使某一线完全对齐,也应估读零。
(2)用单摆测重力加速度
实验目的:用单摆测定当地的重力加速度。
实验原理:g=4π?2;L/T?2;
实验器材:长约1m的细线、小铁球、铁架台、米尺、游标卡尺、秒表。
易错点:
小球摆动时,最大偏角应小于50。到10度。
小球应在竖直面内振动。
计算单摆振动次数时,应从摆球通过平衡位置时开始计时。
摆长应为悬点到球心的距离。即:L=摆线长+摆球的半径。
(3)用油膜法估测分子直径
1:实验原理:油酸滴在水面上,可认为在水面上形成了单分子油膜,,如把分子认为是球状,,测出其厚度即为直径。
2:实验器材:盛水方盘、注射器(或胶头滴管)、试剂瓶、坐标纸、玻璃、痱子粉(或石膏粉)、酒精油酸溶液、量筒
3:步骤:盘中倒水侍其静,胶头滴管吸液油,逐滴滴入量筒中,一滴体积应记清,痱粉均撒水面上,靠近水面一滴成,油膜面积稳定后,方盘上放玻璃稳,描出轮廓印(坐标)纸上,再把格数来数清,多于半格算一格,少于半格舍去无,数出方格求面积,体积应从浓度求。
注意事项:(1)实验前应注意方盘是否干净,否则油膜难以形成。(2)方盘中的水应保持平衡,痱子粉应均匀浮在水面上(3)向水面滴酒精溶液时应靠近水面,不能离水面太高,否则油膜难以形成。(4)向水面只能滴一滴油酸溶液(5)计算分子直径时,注意滴加的不是纯油酸,而是酒精油酸溶液,应用一滴溶液的体积乘以溶液的体积百分比浓度
(4)测定金属的电阻率
电路连接方式是安培表外接法,而不是内接法。
测L时应测接入电路的电阻丝的有效长度。
闭合开关前,应把滑动变阻器的滑动触头置于正确位置。
多次测量U、I,先计算R,再求R平均值。
电流不宜过大,否则电阻率要变化,安培表一般选安挡。
(5)测定电源的电动势和内电阻
实验电路图:安培表和滑动变阻器串联后与伏特表并联。
测量误差:?、r测量值均小于真实值。
安培表一般选档,伏特表一般选0-3伏档。
电流不能过大,一般小于。
误差:电动势的测量值?测和内电阻的测量值r测均小于真实值
(6)电表改装(测内阻)
实验注意:(1)半偏法测电流表内阻时,应满足电位器阻值远远大于待测表内阻(倍左右)的条件。(2)选用电动势高的电源有助于减少误差(3)半偏法测得的内阻值偏小(读数时干路电流大于满度电流,通过电阻箱的电流大于半偏电流,由分流规律可得)(4)改装后电表的偏转仍与总电流或总电压成正比,刻度或读数可由此来定且刻度线应均匀。(5)校准电路一般采用分压器接法(6)绝对误差与相对(百分)误差相比,后者更能反应实验精确程度。
物理高中知识点总结第8篇质点的运动(2)曲线运动、万有引力1)平抛运动
水平方向速度:Vx=Vo竖直方向速度:Vy=gt
水平方向位移:x=Vot竖直方向位移:y=gt2/2
运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
线速度V=s/t=2πr/T角速度ω=Φ/t=2π/T=2πf
向心加速度a=V2/r=ω2r=(2π/T)2r向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
周期与频率:T=1/f角速度与线速度的关系:V=ωr
角速度与转速的关系ω=2πn(此处频率与转速意义相同)
主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。本文来自高三网[]。
3)万有引力
开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
万有引力定律:F=Gm1m2/r2(×10-11N?m2/kg2,方向在它们的连线上)
天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}
卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地);;
地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土石方挖机合作协议书范文模板
- 会计章节练习-第二十七章-合并财务报表
- 七年级上学期班主任工作计划
- 直线与直线方程课件
- 建设工程档案管理流程图
- 泡沫混凝土买卖合同(34篇)
- 自来水厂综合应急预案范文(3篇)
- 幼儿园志愿者活动方案(11篇)
- 幼儿园中班母亲节活动主持稿
- 世界环境日国旗下讲话稿
- 组态软件技术课程设计报告书
- 北京市城乡居民养老保险发展评估研究报告
- 节能标识使用管理规定
- 戴姆勒产品开发质量体系
- 通过全球化与世界空间学习的收获
- GB 17675-2021汽车转向系基本要求
- 窗边的小豆豆-好书推荐
- 决策理论7-多目标决策的基本概念课件
- 交互设计-课件
- 酒店式公寓-课件
- 一年级看图写话(教学)课件
评论
0/150
提交评论