2021年广东省深圳市普通高校对口单招数学摸底卷(含答案)_第1页
2021年广东省深圳市普通高校对口单招数学摸底卷(含答案)_第2页
2021年广东省深圳市普通高校对口单招数学摸底卷(含答案)_第3页
2021年广东省深圳市普通高校对口单招数学摸底卷(含答案)_第4页
2021年广东省深圳市普通高校对口单招数学摸底卷(含答案)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年广东省深圳市普通高校对口单招数学摸底卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.的展开式中,常数项是()A.6B.-6C.4D.-4

2.A.

B.

C.

3.A.B.C.D.

4.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8

5.下列函数中,在区间(0,)上是减函数的是()A.y=sinxB.y=cosxC.y=xD.y=lgx

6.设a=1/2,b=5-1/2则()A.a>bB.a=bC.a<bD.不能确定

7.A.3B.8C.1/2D.4

8.不等式-2x22+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}

9.A.B.C.D.

10.下列句子不是命题的是A.5+1-3=4

B.正数都大于0

C.x>5

D.

11.A.B.{3}

C.{1,5,6,9}

D.{1,3,5,6,9}

12.随着互联网的普及,网上购物已经逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7/15B.2/5C.11/15D.13/15

13.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,则tanθ的值为()A.2B.-2C.1/2D.-1/2

14.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120

15.A.B.C.

16.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

17.已知i是虚数单位,则1+2i/1+i=()A.3-i/2B.3+i/2C.3-iD.3+i

18.已知两直线y=ax-2和3x-(a+2)y+l=0互相平.行,则a等于()A.1或-3B.-1或3C.1和3D.-1或-3

19.已知a是函数f(x)=x3-12x的极小值点,则a=()A.-4B.-2C.4D.2

20.“x=1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

二、填空题(10题)21.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.

22.若=_____.

23.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.

24.已知正实数a,b满足a+2b=4,则ab的最大值是____________.

25.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。

26.lg5/2+2lg2-(1/2)-1=______.

27.

28.

29.拋物线的焦点坐标是_____.

30.已知i为虚数单位,则|3+2i|=______.

三、计算题(10题)31.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

32.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

33.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

34.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

35.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

36.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

37.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

38.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

39.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

40.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

四、简答题(10题)41.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由

42.计算

43.已知a是第二象限内的角,简化

44.已知函数:,求x的取值范围。

45.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长

46.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

47.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

48.化简

49.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率

50.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

五、解答题(10题)51.

52.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?

53.

54.

55.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

56.已知数列{an}是首项和公差相等的等差数列,其前n项和为Sn,且S10=55.(1)求an和Sn(2)设=bn=1/Sn,数列{bn}的前n项和为T=n,求Tn的取值范围.

57.

58.已知等差数列{an}的前72项和为Sn,a5=8,S3=6.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=72,求k的值.

59.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

60.

六、证明题(2题)61.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

62.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

参考答案

1.A

2.A

3.A

4.A

5.B,故在(0,π/2)是减函数。

6.A数值的大小判断

7.A

8.D不等式的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

9.B

10.C

11.D

12.C古典概型的概率公式.由题意,n=4500-200-2100-1000=1200.所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为3300/4500=11/15.

13.A平面向量的线性运算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.

14.B

15.C

16.D

17.B复数的运算.=1+2i/1+i=(1+2i)(1-i)f(1+i)(1-i)=l-i+2i-2i2/1-i2=3+i/2

18.A两直线平行的性质.由题意知两条直线的斜率均存在,因为两直线互相.平

19.D导数在研究函数中的应用∵f(x)=x3-12x,f’(x)=3x2-12,令f(x)=0,则x1=-2,x2=2.当x∈(-∞,-2),(2,+∞)时,f(x)>0,则f(x)单调递增;当x∈(―2,2)时,f(x)<0,则f(x)单调递减,∴f(x)的极小值点为a=2.

20.A充要条件的判断.若x=1,则x2-1=0成立.x2-1=0,则x=1或x=-1,故x=1不-定成立.所以“x=1”是“x2-1=0”的充分不必要条件.

21.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3

22.

23.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.

24.2基本不等式求最值.由题

25.2/π。

26.-1.对数的四则运算.lg5/2+21g2-〔1/2)-1=lg5/2+lg22-2=lg(5/2×4)-2=1-2=-1.

27.-5或3

28.

29.

,因为p=1/4,所以焦点坐标为.

30.

复数模的计算.|3+2i|=

31.

32.

33.

34.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

35.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

36.

37.

38.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

39.

40.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

41.(1)(2)∴又∴函数是偶函数

42.

43.

44.

X>4

45.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则

46.

47.

48.sinα

49.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9

50.

51.

52.(1)函数f(x)=sinx+cosx=sin(x+π/4),∴f(x)的最小正周期是2π,最大值是(2)将y=sinx的图象向左平行移动π/4个单位,得到sin(x+π/4)的图象,再将y==sin(x+π/4)的图象上每-点的纵坐标伸长到原来的倍,横坐标不变,所得图象即为函数y=f(x)的图象.

53.

54.

55.

56.(1)设数列{an}的公差为d则a1=d,an=a1+(n-l)d=nd,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论