抗震支吊架在机电安装综合管线系统的运用_第1页
抗震支吊架在机电安装综合管线系统的运用_第2页
抗震支吊架在机电安装综合管线系统的运用_第3页
抗震支吊架在机电安装综合管线系统的运用_第4页
抗震支吊架在机电安装综合管线系统的运用_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

根据国家标准《建筑抗震设计规范》GB50011-2010

中第13.4.3条和《建筑机电工程抗震设计规范》GB50981-2014中第3.1.3条均为强制条文,并规定了:抗震设防烈度为6度及6度以上地区的建筑机电工程设施必须进行抗震设计的要求,进行综合分析并确定抗震支吊架深化思路。

地震破坏会导致结构的破坏,如房屋的墙、梁、柱等建筑结构;也会导致非结构构件的破坏,如建筑机电设施,水管、风管、电缆桥架等。特别是震后机电系统中管道纵向拉伸断裂,水管破裂引发水灾,带来群众的生命和财产的巨大损失。因此,建设领域设计“抗震”是不可或缺的。

非结构构件的抗震是建立于结构抗震基础上的,抗震支吊架的安装施工是基于建筑机电系统的。因其设备管线复杂、设计图纸信息不充分,以及其对建筑物的主体结构依赖性强,则后续安装时安装难度大,安装空间浪费。这就需要在已进行抗震设计的结构体和相关机电系统平面图纸进行深化,并依据优质产品的力学性能,提供科学严谨的力学计算及验算。以便于安装,降低造价,美观可靠。

根据相关规范的要求和现场勘查实际情况后,以下是探讨抗震支吊架在实体工程中的实际运用。

1

抗震支架与传统承重支架的区别

1.1传统的承重支架系统是以重力为主要荷载的支撑系统,传统重力支吊架仅承受竖向荷载

存在两个缺点:一是侧向摆动大,破坏临近设施,甚至脱落;二是水平地震作用缺乏支撑结构。

1.2抗震支吊架主要承担管线水平方向的载荷

首先布设抗震支吊架,改变管线系统动力特性,由柔变刚,地震作用下响应明显变小;其次,改变抗震支吊架处的重力吊架的受力,进而改变其设计、选型、加劲、锚固等;再者,抗震支吊架分纵向、横向支吊架,其受力、布设、锚固等涉及地震工程、结构工程、机械工程、给排水等多学科多领域知识。传统型支吊架与抗震型支吊架的比较如下表:

2抗震支吊架的实际运用

2.1抗震支吊架的使用范围和布置要求

根据抗震支吊架标准和设计图纸中设计说明的要求,在本项目:

(1)

重量超过1.8KN的风机等设备,内径大于等于DN60mm的电气配管,150N/m或以上的电缆桥架、电缆梯架、电缆线盒、母线槽都应设置抗震支吊架。排烟风道、事故通风风道及相关设备采用抗震支架。

(2)

刚性管道侧向抗震支撑设计间距不得超过12m;柔性管道侧向抗震支撑最大设计间距不得超过6m。

(3)

刚性管道纵向抗震支撑最大设计间距不得超过24m;柔性管道纵向抗震支撑最大设计间距不得超过12m。

(4)

抗震支撑最终间距应根据具体深化设计及现场情况综合确定。

连接构件和部件的抗震措施,应根据设防烈度、建筑使用功能、房屋高度、结构类型和变形特征、附属设备所处的位置和运转要求等,按相关专门标准的要求经综合分析后确定。建筑附属机电设备的支架应具有足够的刚度和强度;其与建筑结构应有可靠的连接和锚固,应使设备在遭遇设防烈度地震影响后能迅速恢复运转。根据构件性能进行验算,确定地震力影响值≤构件承载力。

2.2抗震支吊架的施工深化

(1)深化流程

设计依据、初设布点→逐点计算地震力→选择合适的抗震大样并验算→调整间距直至满足力学要求→施工阶段安装角度及间距调整及验算

(2)初设布点及抗震支吊架详图

根据本工程某消防系统管道和某防排烟等平面布置图并配合结构专业图纸布置抗震支架点位,包括双向和四向支架的平面位置和方向,同时确认每个支架的分相关管道范围。通过计算调整抗震支架最优的安装位置。

(3)抗震支吊架的样式

根据抗震支吊架布点平面布置图,作出抗震支架大样图,以便进行受力核算和施工下料,详见下图。

图一管道支抗震吊架(给排水、消防管道)图二风管抗震支吊架图三电缆桥架抗震支吊架图四管道组合抗震支吊架(4)构件抗震验算

抗震支吊架的所有构件均应采用成品构件,除C型槽钢、全螺纹吊杆可以进行现场切断外,不得对其它产品进行现场加工。国内抗震设计系数应根据建筑功能系数、构件、部件所属系统等进行选取。以下是以侧向抗震支吊架为例,进行荷载分析,如下图。

图五抗震支吊架受力荷载分析图抗震支吊架间距的计算公式表一各种类型抗震支架最大间距设置位置(初设间距)根据《国家建筑机电工程抗震设计规范》水平地震作用计算公式计算设计荷载,抗震计算(等效侧力法):

单管荷载的计算,以单管节点为例,管道公称直径DN150管道类型为消防管。支吊架形式如图六所示。图六支吊架形式图中管径从DN65-DN150,各部件的荷载如下:

DN150-168的U型管吊架设计荷载:18000NM20全螺纹吊杆设计荷载:14000NM12可调式铰链A设计荷载:7300N验算过程:

M12槽钢连接件设计荷载:7300N单位长度管重:428.75N/m侧向管长:11m纵向管长:22m侧向荷载=单位长度管重×侧向管长×数量×最大水平加速度为:

428.75N/m×11m×1×0.5=2358N

纵向荷载=单位长度管重×纵向管长×数量×最大水平加速度为:

428.75N/m×22m×1×0.5=4716N

承载量=单位长度管重×数量×6为:428.75N/m×1×6m=2572.5N

侧撑荷载余量45°-60°:可调式铰链A–1.414×侧撑荷载为:

7300N-1.414×2358N=3966N

由3966N>0可知符合要求,不用增大各部件型号。纵撑荷载余量45°-60°:可调式铰链A–1.414×纵撑荷载为:

7300N-1.414×4716N=632N

由632N>0可知符合要求,不用增大各部件型号。吊杆荷载余量45-60:全螺纹吊杆–1×max(侧撑荷载,纵撑荷载)–承载量

14000N-1×4716N-2572.5=11856.5N

由11856.5N>0可知符合要求,不用增大各部件型号。2.3抗震支吊架荷载测试

向支撑配件加荷载试验,侧向支撑试验荷载在施加时应垂直于受支撑的管道轴线,纵向支撑试验荷载在施加时应平行于受支撑的管道轴线。详见下图。

结构固定配件施加试验荷载应先与建筑结构垂直施加,然后再与建筑结构平行施加。对于多用途支撑座,则在施加第二道试验荷载时应与该结构固定件相平行。随后再与上述平行试验荷载的方向成90°来施加。如果结构固定配件能够处于90°的位置并与前述第二道试验荷载处在同一平面内,则可沿该方向施加第三道荷载。3抗震支吊架的施工技术3.1抗震支吊架的组成

抗震支撑由锚固体、加固吊杆、斜撑和抗震连接构件组成。悬吊螺杆与管线的节点距离不得超过0.1m,螺杆根据需要作加固处理。如果在同一位置设立两个反向的刚性抗震支撑,则可以省去悬吊螺杆。考虑到地震力的荷载,刚性抗震支撑的悬吊螺杆和结构锚固件均需加大尺寸,螺杆和锚固件的最大承载力需大于算得的地震力。3.2抗震支吊的施工依据抗震支吊架在地震中可对给排水系统、空调系统、电气管线系统提供充分的保护,所以抗震支吊架在任何时候、任何安装角度都须大于地震力。水平方向的地震负荷可由两个不同方向的抗震支撑承担,即侧向抗震支撑承担侧向负荷,纵向抗震支撑承担纵向负荷。所有抗震支撑须和结构体作可靠连接。与钢筋混凝土框架结构的梁柱板作刚性连接,与钢结构作柔性连接,且须经设计人员验算。3.3

抗震支吊架的施工步骤测量→下料→吊点胀栓(或拧爆)安装→垂直向吊杆安装→横担(或管卡)安装→侧向、纵向加固件安装。3.4抗震支吊架在机电安装工程中的施工技术

(1)管道和电线套管允许纵向偏移,但不得超过最大侧向支撑间距的1/16;风管允许偏移,但不得超过风管宽度的2倍。(2)水平管道在90˚转弯时,需设抗震支吊架:其他角度转弯长度大于抗震设计间距的1/16时,需设侧向及纵向抗震支吊架。(3)计算水平地震力荷载时,只需考虑满负荷重量而不需要考虑其他因素。(4)抗震吊架不应限制管线热胀冷缩产生的应力,当把热胀冷缩因素考虑在内时,纵向吊架应在构件选型上考虑所选型号应能抵抗管线的热胀冷缩应力。(5)保温管线的抗震吊架管码需按保温后的尺寸考虑,门型吊架用于保温风管,水管亦按此考虑。(6)用于刚性的管道抗震支撑不能安装与建筑的不同结构部位或功能部位,否则会因地震作用而产生不同的位移。(7)单管抗震支撑双向侧向或纵向或具有侧/纵向作用的拐点抗

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论