



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题11圆锥曲线一、单选题1.已知,为的两个顶点,点在抛物线上,且到焦点的距离为13,则的面积为()A.12 B.13 C.14 D.152.已知椭圆的焦距为4,直线与椭圆相交于点、,点是椭圆上异于点、的动点,直线、的斜率分别为、,且,则椭圆的标准方程是()A. B. C. D.3.已知双曲线的焦点到渐近线的距离为1,且与椭圆有公共焦点.则双曲线的渐近线方程为()A. B. C. D.4.点、分别为椭圆的左、右顶点,直线与椭圆相交于、两点,记直线、的斜率分别为、,则的最小值为()A. B. C. D.5.已知椭圆与双曲线有相同的焦点,,点是两曲线在第一象限的交点,且在上的投影等于,,分别是椭圆和双曲线的离心率,则的最小值是()A. B.6 C.8 D.6.已知双曲线(,)的左右焦点分别为,,为双曲线右支上的任意一点,若的最小值为,则双曲线离心率的取值范围是()A. B. C. D.7.已知曲线与曲线恰好有两个不同的公共点,则实数的取值范围是()A. B. C.D.8.已知椭圆C:,M,N是坐标平面内的两点,且M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=()A.4 B.8C.12 D.169.已知椭圆:,过点的直线与椭圆相交于,两点,若弦恰被点平分,则直线的斜率为()A. B. C. D.210.已知椭圆的左、右焦点分别为,,焦距为,直线与椭圆的一个交点为在第一象限)满足,则该椭圆的离心率为A. B. C. D.11.已知抛物线的焦点为,过点的直线交抛物线于,两点,且,则()A.6 B.7 C.8 D.912.已知双曲线C:(,)的渐近线方程为,若动点P在C的右支上,,分别为C的左,右焦点,的最小值是2a(其中O为坐标原点),则的最小值为()A.4 B.8 C.16 D.24二、填空题13.已知椭圆:的焦距为2,,为其左、右焦点,点,在椭圆上,且,是以为顶角的等腰三角形,则椭圆的标淮方程为______.14.已知双曲线的左、右焦点分别为、,过点做直线交双曲线于点、,连接(为坐标原点)并延长交双曲线于点.若,且,则四边形的面积为______.15.已知双曲线:(,)的右焦点为,以(为坐标原点)为直径的圆与双曲线的两渐近线分别交于、两点(不同于原点).若的面积等于,则双曲线的离心率为______.16.设抛物线:()的焦点为,过的直线(斜率存在)与抛物线相交于、两点,线段的垂直平分线交轴于点,若点,且,则的值为______.三、解答题17.设命题:实数满足为焦点在轴上的椭圆;命题:实数满足点,位于直线两侧.(1)若,为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18.设抛物线:的焦点为,点是抛物线上一点,且.(1)求抛物线的方程;(2)设直线与抛物线交于、两点,若(为坐标原点).求证:直线过定点.19.在平面直角坐标系中,已知椭圆:的离心率为,且经过点.(1)求椭圆的方程;(2)设为椭圆的右焦点,直线与椭圆相切于点(点在第一象限),过原点作直线的平行线与直线相交于点,问:线段的长是否为定值?若是,求出定值;若不是,说明理由.20.已知椭圆的左、右焦点分别为,,离心率为,过作直线与椭圆交于,两点,的周长为8.(1)求椭圆的方程;(2)点、点分别为椭圆长轴的左、右端点,过点作轴的垂线,为垂线上异于点的动点,连接交椭圆于点.问:在轴上是否存在定点,使得?若存在,求出点的坐标,若不存在,请说明理由,21.已知椭圆:()的焦距为,过左顶点且斜率为的直线和以椭圆的右顶点为圆心,短半轴为半径的圆相切.(1)求椭圆的方程;(2)若过点作两条互相垂直的直线和,分别交椭圆于,两点,问轴上是否存在一定点,使得成立,若存在,则求出该定点,若不存在,请说明理由.22.已知椭圆的中心在原点,焦点在轴上,离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西财经大学华商学院《运动辅项(一)》2023-2024学年第一学期期末试卷
- 重庆经贸职业学院《材料与纳米科学技术》2023-2024学年第二学期期末试卷
- 辽宁省丹东第九中学2025届初三中考全真模拟卷(三)生物试题含解析
- 江西应用科技学院《自然科学基础》2023-2024学年第二学期期末试卷
- 2025年国内聚丙烯市场现状及应对策略分析
- (上课用) 获取网络信息的策略与技巧
- 机床附件的企业文化建设与知识管理考核试卷
- 放射性金属矿矿产资源发展战略考核试卷
- 砼构件预制件的模具技术创新考核试卷
- 清扫工具制造业的技术创新驱动发展研究考核试卷
- 银行内控案防警示教育
- 2025-2030中国镀锌钢板行业市场发展趋势与前景展望战略研究报告
- 施工合同中约定的安全防护、文明施工措施费用支付计划
- 2025年安阳职业技术学院单招职业倾向性测试题库带答案
- 2025年审计监察面试题及答案
- nginx面试题及答案100道
- 2025年开封大学单招职业技能测试题库及答案1套
- 小学教师招聘-《小学教育学》押题密卷1
- 《InSAR干涉测量》课件
- 2025年脑机接口蓝皮书:未来将至打造人机交互新范式-前瞻研究院
- 工程地质学知到智慧树章节测试课后答案2024年秋广东工业大学
评论
0/150
提交评论