版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁2.下列各式由左边到右边的变形中,属于分解因式的是A.a(x+y)="ax+ay"B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.如图,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,则CF的长为()A.2cm B.3cm C.4cm D.5cm4.将直线y=2x-3向右平移2个单位。再向上平移2个单位后,得到直线y=kx+b.则下列关于直线y=kx+b的说法正确的是()A.与y轴交于(0,-5) B.与x轴交于(2,0)C.y随x的增大而减小 D.经过第一、二、四象限5.定义一种正整数“”的运算:①当是奇数时,;②当是偶数时,(其中是使得为奇数的正整数......,)两种运算交替重复运行.例如,取,则:,若,则第次“”运算的结果是()A. B. C. D.6.图1长方形纸带,,将纸带沿折叠成图2再沿折叠成图3,图3中的的度数是.A.98° B.102° C.124° D.156°7.如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……依此规律,得到等腰直角三角形A22OB22.则点B22的坐标()A.(222,-222) B.(22016,-22016) C.(222,222) D.(22016,22016)8.如图,阴影部分为一个正方形,此正方形的面积是()\A.2 B.4 C.6 D.89.我市某一周每天的最高气温统计如下(单位:℃):27,28,1,28,1,30,1.这组数据的众数与中位数分别是().A.28,28 B.28,1 C.1,28 D.1,110.下列方程中,是一元二次方程的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=0.8m;当它的一端B地时,另一端A离地面的高度AC为____m.12.观察分析下列数据:0,,,-3,,,,…,根据数据排列的规律得到第10个数据应是__________.13.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.14.已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是.15.某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:面试笔试成绩评委1评委2评委392889086如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩_____.16.函数y=-x,在x=10时的函数值是______.17.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是,,,,在本次射击测试中,成绩最稳定的是_____.18.如图,AB∥CD,则∠1+∠3—∠2的度数等于__________.三、解答题(共66分)19.(10分)如图,中,,两点在对角线上,.(1)求证:;(2)当四边形为矩形时,连结、、,求的值.20.(6分)以△ABC的三边在BC同侧分别作三个等边三角形△ABD,△BCE,△ACF,试回答下列问题:(1)四边形ADEF是什么四边形?请证明:(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,能否构成正方形?(5)当△ABC满足什么条件时,无法构成四边形?21.(6分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.22.(8分)如图,长的楼梯的倾斜角为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角为45°,求调整后的楼梯的长.23.(8分)分解因式(1)(2)24.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.25.(10分)(1)[探索发现]正方形中,是对角线上的一个动点(与点不重合),过点作交线段于点.求证:小玲想到的思路是:过点作于点于点,通过证明得到.请按小玲的思路写出证明过程(2)[应用拓展]如图2,在的条件下,设正方形的边长为,过点作交于点.求的长.26.(10分)已知一次函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数图象与y轴的交点坐标为(0,﹣2),求m的值;(3)若y随着x的增大而增大,求m的取值范图;(4)若函数图象经过第一、三,四象限,求m的取值范围.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
∵甲的平均数和丙的平均数相等大于乙和丁的平均数,∴从甲和丙中选择一人参加比赛,又∵甲的方差与乙的方差相等,小于丙和丁的方差.∴选择甲参赛,故选A.考点:方差;算术平均数.2、C【解析】分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解:A、是多项式乘法,故选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故选项错误;C、提公因式法,故选项正确;D、右边不是积的形式,故选项错误.故选C.3、C【解析】分析:由将△ADE折叠使点D恰好落在BC边上的点F可得Rt△ADE≌Rt△AFE,所以AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,进而得到结论.详解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm).故选C.点睛:本题主要考查了图形的翻折变换以及勾股定理、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.4、A【解析】
利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】直线y=2x-3向右平移2个单位得y=2(x-2)-3,即y=2x-7;再向上平移2个单位得y=2x-7+2,即y=2x-5,A.当x=0时,y=-5,与y轴交于(0,-5),本项正确,B.当y=0时,x=,与x轴交于(,0),本项错误;C.2>0y随x的增大而增大,本项错误;D.2>0,直线经过第一、三象限,-5<0直线经过第四象限,本项错误;故选A.【点睛】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.5、B【解析】
计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【详解】若n=13,第1次结果为:3n+1=10,第2次结果是:=5,第3次结果为:3n+1=16,第1次结果为:=1,第5次结果为:1,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,1两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是1,而2019次是奇数,因此最后结果是1.故选B.【点睛】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.6、B【解析】
由矩形的性质可知AD∥BC,由此可得出∠AFE=∠CEF=26°,再根据翻折的性质可知每翻折一次减少一个∠AFE的度数,由此即可算出∠DFE度数.【详解】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠AFE=∠CEF=26°.由翻折的性质可知:图2中,∠EFD=180°-∠AFE=154°,∠AFD=∠EFD-∠AFE=128°,图3中,∠DFE=∠AFD-∠AFE=102°,故选择:B.【点睛】本题考查了翻折变换以及矩形的性质,解题的关键是找出∠DFE=180°-3∠AFE.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.7、A【解析】∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,A1B1=OA1,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O,A2B2=A2O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,-4),B3(-8,8),B4(16,16),∵22÷4=504…1,∴点B22与B1同在第四象限,∵﹣4=﹣22,8=23,16=24,∴点B22(222,-222),故选A.【点睛】本题考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.8、D【解析】
根据等腰直角三角形的性质求出正方形的边长即可.【详解】解:如图,∵△ABC是等腰直角三角形,AC=4,∴AB=BC=2,∴正方形的面积=1.故选:D.【点睛】本题考查等腰直角三角形的性质,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9、D【解析】
根据中位数和众数的定义,先将这组数据按顺序依次排列,取中间的那个数即为中位数,取出现次数最多的那个数即为众数;【详解】众数:1;中位数:1;故选:D.【点睛】本题主要考查众数和中位数的定义,熟练掌握相关的定义是求解本题的关键.10、C【解析】
根据一元二次方程的定义即可求解.【详解】A.是一元一次方程,故错误;B.含有两个未知数,故错误;C.为一元二次方程,正确;D.含有分式,故错误,故选C.【点睛】此题主要考查一元二次方程的定义,解题的关键是熟知一元二次方程的特点.二、填空题(每小题3分,共24分)11、1.6【解析】
确定出OD是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半解答即可.【详解】解:∵跷跷板AB的支柱OD经过它的中点O,AC、OD都与地面垂直,∴OD是△ABC的中位线,∴AC=2OD=2×0.8=1.6米.故答案为1.6米.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,是基础题,熟记定理是解题的关键.12、1【解析】
通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为:1.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.13、【解析】
先找出中心对称图形有平行四边形、正方形和圆3个,再直接利用概率公式求解即可求得答案.【详解】解:张完全相同的卡片中中心对称图形有平行四边形、正方形和圆3个,随机摸出1张,卡片上的图形是中心对称图形的概率是,故答案为:.【点睛】本题主要考查了中心对称图形和概率公式.用到的知识点为:概率所求情况数与总情况数之比.14、【解析】
解:如图,取AB的中点D,连接OD、CD,∵正三角形ABC的边长为a,,在△ODC中,OD+CD>OC,∴当O、D、C三点共线时OC最长,最大值为.15、89.6分【解析】
将面试所有的成绩加起来再除以3即可得小王面试平均成绩,再根据加权平均数的含义和求法,求出小王的最终成绩即可.【详解】∵面试的平均成绩为=88(分),∴小王的最终成绩为=89.6(分),故答案为89.6分.【点睛】此题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.同时考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.16、-1【解析】
将函数的自变量的值代入函数解析式计算即可得解.【详解】解:当时,y=-=-=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征,准确计算即可,比较简单.17、丙【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是0.90,1.22,0.43,1.68,∴S2丙<S2甲<S2乙<S2丁,∴成绩最稳定的同学是丙.【点睛】本题考查方差的意义,方差越大,数据的波动越大;方差越小,数据波动越小,学生们熟练掌握即可.18、180°【解析】
解:∵AB∥CD∴∠1=∠EFD∵∠2+∠EFC=∠3∠EFD=180°-∠EFC∴∠1+∠3—∠2=180°故答案为:180°三、解答题(共66分)19、(1)证明见解析;(1)1.【解析】
(1)证明△ABE≌△CDF,根据全等三角形的对应边相等即可证得;
(1)根据四边形AECF为矩形,矩形的对角线相等,则AC=EF,据此即可求解.【详解】(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∴∠1=∠1.
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴AE=CF.
(1)解:∵四边形AECF为矩形,
∴AC=EF,
∴,
又∵△ABE≌△CDF,
∴BE=DF,
∴当四边形AECF为矩形时,=1.【点睛】此题考查平行四边形的性质,矩形的性质,理解矩形的对角线相等是解题关键.20、(1)见解析;(2)当△ABC中的∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC中的AB=AC时,四边形ADEF是菱形;(4)当∠BAC=150°且AB=AC时,四边形ADEF是正方形;(5)当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.【解析】
(1)通过证明△DBE≌△ABC,得到DE=AC,利用等边三角形ACF,可得DE=AF,同理证明与全等,利用等边三角形,得AD=EF,可得答案.(2)利用平行四边形ADEF是矩形,结合已知条件等边三角形得到即可.(3)利用平行四边形ADEF是菱形形,结合已知条件等边三角形得到即可.(4)结合(2)(3)问可得答案.(5)当四边形ADEF不存在时,即出现三个顶点在一条直线上,因此可得答案。【详解】解:(1)∵△BCE、△ABD是等边三角形,∴∠DBA=∠EBC=60°,AB=BD,BE=BC,∴∠DBE=∠ABC,∴△DBE≌△ABC,∴DE=AC,又△ACF是等边三角形,∴AC=AF,∴DE=AF,同理可证:AD=EF,∴四边形ADEF是平行四边形.(2)假设四边形ADEF是矩形,则∠DAF=90°,又∠DAB=∠FAC=60°,∠DAB+∠FAC+∠DAF+∠BAC=360°∴∠BAC=150°.因此当△ABC中的∠BAC=150°时,四边形ADEF是矩形.(3)假设四边形ADEF是菱形,则AD=DE=EF=AF∵AB=AD,AC=AF,∴AB=AC因此当△ABC中的AB=AC时,四边形ADEF是菱形.(4)结合(2)(3)问可知当∠BAC=150°且AB=AC时,四边形ADEF是正方形.(5)由图知道:∠DAB+∠FAC+∠DAF+∠BAC=360°∴当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.【点睛】本题考查了平行四边形的判定,菱形,矩形,正方形的性质与判定,全等三角形的判定,等边三角形的性质等知识点的应用,是一道综合性比较强的题目,掌握相关的知识点是解题的关键.21、(1)AP=BQ;(1)QM的长为;(2)AM的长为.【解析】
(1)要证AP=BQ,只需证△PBA≌△QCB即可;(1)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=2,BP=1,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=1.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中运用勾股定理就可解决问题;(2)过点Q作QH⊥AB于H,如图,同(1)的方法求出QM的长,就可得到AM的长.【详解】解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ;(1)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=2.∵BP=1PC,∴BP=1,PC=1,∴BQ=AP===,∴BH===1.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.设QM=x,则有MB=x,MH=x-1.在Rt△MHQ中,根据勾股定理可得x1=(x-1)1+21,解得x=.∴QM的长为;(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ1=AP1=AB1+PB1,∴BH1=BQ1-QH1=AB1+PB1-AB1=PB1,∴BH=PB=m.设QM=x,则有MB=QM=x,MH=x-m.在Rt△MHQ中,根据勾股定理可得x1=(x-m)1+(m+n)1,解得x=m+n+,∴AM=MB-AB=m+n+-m-n=.∴AM的长为.【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、勾股定理、轴对称的性质等知识,设未知数,然后运用勾股定理建立方程,是求线段长度常用的方法,应熟练掌握.22、【解析】
在中,,∴∴,∴在中,,∴∴.23、(1);(2)【解析】
(1)先提取-1,然后利用完全平方公式进行因式分解;(2)先提取(a-5),然后利用平方差公式进行因式分解.【详解】解:(1)==(2)===【点睛】本题考查提公因式和公式法因式分解,掌握因式分解的技巧正确计算是本题的解题关键.24、(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【解析】
(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1),将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击的中位数,∵乙射击的次数是10次,∴=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版房地产买卖合同模板
- 2024年港口疏浚及堤坝修建合同3篇
- 劳动合同书电子版
- 水甲苯精馏塔课程设计
- 插班课程设计案例分析
- 管道课程设计小结
- 航空物流课程设计
- 航天研学课程设计
- 烘焙网络营销课程设计
- 机械小车课程设计
- 中国铝业股份有限公司河南分公司巩义市山川铝土矿矿山地质环境保护与土地复垦方案
- 工商企业管理毕业论文范文六篇
- 二十五项反措检查表优质资料
- 保密办主任工作总结保密办主任工作总结八篇
- 新生儿沐浴及抚触护理
- 机械原理课程设计-压床机构的设计
- 教学案例 英语教学案例 市赛一等奖
- 四川省2023职教高考英语试题
- JJG 913-2015浮标式氧气吸入器
- GB/T 12190-2006电磁屏蔽室屏蔽效能的测量方法
- 2020年贵州专升本高等数学真题及答案
评论
0/150
提交评论