版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,若矩形的对角线长为4,则AD的长是()A.2 B.4 C.2 D.42.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是(
)A.12 B.10 C.8或10 D.63.若a>b,则下列式子正确的是()A.a﹣4>b﹣3 B.a<b C.3+2a>3+2b D.﹣3a>﹣3b4.某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~3月份利润的平均数是120万元B.1~5月份利润的众数是130万元C.1~5月份利润的中位数为120万元D.1~2月份利润的增长快于2~3月份利润的增长5.如果a<b,则下列式子错误的是()A.a+2<b+2 B.a-3<b-3 C.-5a<-5b D.<6.下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序().①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④一杯越来越凉的水(水温与时间的关系)A.①②④③B.③④②①C.①④②③D.③②④①7.下表是小红填写的实践活动报告的部分内容:设铁塔顶端到地面的高度为,根据以上条件,可以列出的方程为()A. B.C. D.8.如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.179.一辆汽车以50的速度行驶,行驶的路程与行驶的时间之间的关系式为,其中变量是()A.速度与路程 B.速度与时间 C.路程与时间 D.速度10.已知,多项式可因式分解为,则的值为()A.-1 B.1 C.-7 D.711.在平而直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则关于点D的说法正确的是()甲:点D在第一象限乙:点D与点A关于原点对称丙:点D的坐标是(-2,1)丁:点D与原点距离是.A.甲乙 B.乙丙 C.甲丁 D.丙丁12.已知y是x的一次函数,下表中列出了部分对应值:x-101y1m-1则m等于()A.-1 B.0 C. D.2二、填空题(每题4分,共24分)13.一元二次方程的根是_____________14.若一元二次方程有两个不相同的实数根,则实数的取值范围________.15.已知为实数,若有正数b,m,满足,则称是b,m的弦数.若且为正数,请写出一组,b,m使得是b,m的弦数:_____________.16.直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.17.若的整数部分是a,小数部分是b,则______.18.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.三、解答题(共78分)19.(8分)如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.20.(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.21.(8分)已知:P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足.求证:AP=EF.22.(10分)如图,在中,点为边的中点,点在内,平分点在上,.(1)求证:四边形是平行四边形;(2)线段之间具有怎样的数量关系?证明你所得到的结论.23.(10分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由.(2)在(1)的条件下,当∠A=__________°时,四边形BECD是正方形.24.(10分)已知与成正比例,且时.求:与的函数解析式.25.(12分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.(1)求k的值;(2)如果这个方程有两个整数根,求出它的根.26.如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据矩形性质得出AC=2AO,BD=2BO,AC=BD=4,推出AO=OB=2,得出等边三角形AOB,可得AB=2,由勾股定理可求AD的长.【详解】∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD=4,∴AO=OB=2,∵∠AOB=60°,∴△AOB是等边三角形,∴∠ABO=60°,AB=2=OA∴故选:C.【点睛】本题考查了等边三角形的性质和判定,矩形的性质的应用,注意:矩形的对角线互相平分且相等.2、B【解析】
根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.3、C【解析】
根据不等式的性质将a>b按照A、B、C、D四个选项的形式来变形看他们是否成立.【详解】解:A、a>b⇒a﹣4>b﹣4或者a﹣3>b﹣3,故A选项错误;B、a>b⇒a>b,故B选项错误;C、a>b⇒2a>2b⇒3+2a>3+2b,故C选项正确;D、a>b⇒﹣3a<﹣3b,故D选项错误.故选C.考点:不等式的性质.4、B【解析】
本题中的图为折线统计图,它反映出了数据的的多少和变化情况.由图可知,1~5月份的利润分别是100,110,130,115,130,通过这些数据依次解答选项中问题.【详解】A.1~3月份的利润分别是100,110,130,则平均数应为(100+110+130)÷3=,排除B.1~5月份的利润分别是100,110,130,115,130,众数为130,符合.C.1~5月份的利润从小到大排列分别是100,110,115,130,130,中位数为115,排除.D.1~2月份利润的增长了110-100=10,2~3月份利润的增长了130-110=20,1~2月份利润的增长慢于2~3月份利润的增长,排除.故答案为B【点睛】本题考查了通过折线统计图分析数据的平均数,中位数,众数和每月之间的变化量的计算.平均数=各数据之和÷个数.中位数:把一组数据从小到大排列,若这组数据的个数为奇数个,取最中间的数作为中位数;若这组数据的个数为偶数个,则取中间两个数的平均数为中位数.众数:出现次数最多的数据为众数.5、C【解析】
根据不等式的性质,逐项判断即可.【详解】解:A.,,选项结论正确,不符合题意;B.,,选项结论正确,不符合题意;C.,,选项结论错误,符合题意;D.,,选项结论正确,不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6、D【解析】本题考查的是变量关系图象的识别,借助生活经验,弄明白一个量是如何随另一个量的变化而变化是解决问题的关键.①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系),路程是时间的正比例函数,对应第四个图象;②向锥形瓶中匀速注水(水面的高度与注水时间的关系),高度是注水时间的函数,由于锥形瓶中的直径是下大上小,故先慢后快,对应第二个函数的图象;③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系),温度计的读数随时间的增大而增大,由于温度计的温度在放入热水前有个温度,故对应第一个图象;④一杯越来越凉的水(水温与时间的关系),水温随时间的增大而减小,由于水冷却到室温后不变化,故对应第三个图象;综合以上,得到四个图象对应的情形的排序为③②④①.7、A【解析】
过D作DH⊥EF于H,则四边形DCEH是矩形,根据矩形的性质得到HE=CD=10,CE=DH,求得FH=x-10,得到CE=x-10,根据三角函数的定义列方程即可得到结论.【详解】解:过D作DH⊥EF于H,
则四边形DCEH是矩形,
∴HE=CD=10,CE=DH,
∴FH=x-10,
∵∠FDH=α=45°,
∴DH=FH=x-10,
∴CE=x-10,∴x=(x-10)tan50°,
故选:A.【点睛】本题考查了解直角三角形的应用,解题的关键是熟练运用锐角三角函数的定义,正确的识别图形,由实际问题抽象出一元一次方程.8、C【解析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=1,求出即可:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形.∴AC=AB=1.∴正方形ACEF的周长是AC+CE+EF+AF=1×1=2.故选C.9、C【解析】
在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断.【详解】解:由题意的:s=50t,路程随时间的变化而变化,则行驶时间是自变量,行驶路程是因变量;故选:C.【点睛】此题主要考查了自变量和因变量,正确理解自变量与因变量的定义,是需要熟记的内容.10、B【解析】
根据因式分解与整式的乘法互为逆运算,把利用乘法公式展开,即可求出m的值.【详解】=又多项式可因式分解为∴m=1故选B【点睛】此题考查了因式分解的意义,用到的知识点是因式分解与整式的乘法互为逆运算,是一道基础题.11、D【解析】
根据A,C的坐标特点得到B,D也关于原点对称,故可求出D的坐标,即可判断.【详解】∵平行四边形ABCD中,A(m,n),C(-m,-n)关于原点对称,∴B,D也关于原点对称,∵B(2,-1)∴D(-2,1)故点D在第四象限,点D与原点距离是故丙丁正确,选D.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知各点的坐标特点.12、B【解析】
由于一次函数过点(-1,1)、(1,-1),则可利用待定系数法确定一次函数解析式,然后把(0,m)代入解析式即可求出m的值.【详解】设一次函数解析式为y=kx+b,把(−1,1)、(1,−1)代入解得,所以一次函数解析式为y=−x,把(0,m)代入得m=0.故答案为:B.【点睛】此题考查待定系数法求一次函数解析式,解题关键在于运用一次函数图象上点的坐标特征求解m.二、填空题(每题4分,共24分)13、,【解析】
先把-2移项,然后用直接开平方法求解即可.【详解】∵,∴,∴x+3=±,∴,.故答案为:,.【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.14、且【解析】
利用一元二次方程的定义和判别式的意义得到m≠1且△=(-2)2-4m>1,然后求出两不等式的公共部分即可.【详解】解:根据题意得m≠1且△=(-2)2-4m>1,
解得m<1且m≠1.故答案为:m<1且m≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.15、(答案不唯一)【解析】
根据题中提供的弦数的定义判断即可.【详解】解:,是4,3的弦数,故答案为:(答案不唯一)【点睛】本题考查了平方差公式,正确理解题中的新定义是解本题的关键.16、1【解析】
根据边之间的关系,运用勾股定理,列方程解答即可.【详解】由题意可设两条直角边长分别为x,2x,由勾股定理得x2+(2x)2=(1)2,解得x1=1,x2=-1舍去),所以较短的直角边长为1.故答案为:1【点睛】本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.17、1.【解析】
若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.18、①③④【解析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.【详解】根据图示及数据可知:
①k<0正确;
②a<0,原来的说法错误;
③方程kx+b=x+a的解是x=3,正确;
④当x>3时,y1<y2正确.
故答案是:①③④.【点睛】考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.三、解答题(共78分)19、(1)AE+CF=EF,证明见解析;(2),理由见解析.【解析】
(1)由题干中截长补短的提示,再结合第(1)问的证明结论,在第二问可以用截长补短的方法来构造全等,从而达到证明结果.(2)同理作辅助线,同理进行即可,直接写出猜想,并证明.【详解】(1)图2猜想:AE+CF=EF,证明:在BC的延长线上截取CA'=AE,连接A'D,∵∠DAB=∠BCD=90°,∴∠DAB=∠DCA'=90°,
又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=120°,∴∠EDA'=120°,∵∠EDF=60°,∴∠EDF=∠A'DF=60°,
又DF=DF,∴△EDF≌△A'DF(SAS),则EF=A'F=FC+CA'=FC+AE;(2)如图3,AE+CF=EF,证明:在BC的延长线上截取CA'=AE,连接A'D,∵∠DAB与∠BCD互补,∠BCD+∠DCA'=180°∴∠DAB=∠DCA',
又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=2α,∴∠EDA'=2α,∵∠EDF=α,∴∠EDF=∠A'DF=α
又DF=DF,∴△EDF≌△A'DF(SAS),则EF=A'F=FC+CA'=FC+AE.【点睛】本题是常规的角含半角的模型,解决这类问题的通法:旋转(截长补短)构造全等即可,题目所给例题的思路,为解决此题做了较好的铺垫.20、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.【解析】
(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【详解】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:□ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.故答案为:(1)证明见解析;(2)菱形;(3)矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.21、见试题解析【解析】试题分析:利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP.证明:如图,连接PC,∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=PC,所以EF=AP.22、(1)见详解;(2),证明见详解.【解析】
(1)延长CE交AB于点G,证明,可得,结合题目条件利用中位线中的平行即可求证;(2)根据已知条件易得,根据全等可得,从而得到之间的数量关系.【详解】(1)延长CE交AB于点G,如图所示:∵平分∴在中∵点为边的中点∴∴DE为的中位线∴∵∴四边形是平行四边形(2)∵四边形是平行四边形∴∵D、E分别是BC、GC的中点【点睛】本题考查了平行四边形的判定和性质,全等三角形的性质,中位线的性质等知识点,解题的关键在于判断四边形是平行四边形,DE为的中位线,,从而可解此题.23、(1)菱形,理由见解析;(2)1.【解析】
①先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BECD是菱形;
②当∠A=1°时,△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.【详解】解:(1)四边形BECD是菱形,理由如下:
∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=AB=BD,
∴四边形BECD是菱形;
故答案为:菱形;
(2)当∠A=1°时,四边形BECD是正方形;理由如下:
∵∠ACB=90°,
当∠A=1°时,△ABC是等腰直角三角形,
∵D为AB的中点,
∴CD⊥AB,
∴∠CDB=90°,
∴四边形BECD是正方形;
故答案为:1.【点睛】本题是四边形综合题目,考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度园林景观养护管理二零二五版树木采购与养护合同4篇
- 2025年民营医院医生聘用合同(妇产科)定制版-@-1
- 二零二五年度农业科技推广居间服务承包合同4篇
- 二零二五年度离婚财产分割与股权处置合同范本2篇
- 2025年度代持合同解除条件及赔偿条款范本3篇
- 二零二五版艺术品购买分期付款借款合同范本3篇
- 二零二五年度便利店租赁合同范本:便利店租赁及品牌使用权授权许可转让授权许可转让授权许可转让授权许可转让授权许可转让合同3篇
- 二零二五年度环保产业园区建设资金监管与可持续发展合同4篇
- 2025年度储藏室租赁及仓储货物保险服务合同3篇
- 二零二五年度船舶运输水泥材料标准合同4篇
- 常见老年慢性病防治与护理课件整理
- 履约情况证明(共6篇)
- 云南省迪庆藏族自治州各县区乡镇行政村村庄村名居民村民委员会明细
- 设备机房出入登记表
- 六年级语文-文言文阅读训练题50篇-含答案
- 医用冰箱温度登记表
- 零售学(第二版)第01章零售导论
- 大学植物生理学经典05植物光合作用
- 口袋妖怪白金光图文攻略2周目
- 光伏发电站集中监控系统通信及数据标准
- 三年级下册生字组词(带拼音)
评论
0/150
提交评论