2022-2023学年葫芦岛市老官卜中学数学八年级第二学期期末教学质量检测试题含解析_第1页
2022-2023学年葫芦岛市老官卜中学数学八年级第二学期期末教学质量检测试题含解析_第2页
2022-2023学年葫芦岛市老官卜中学数学八年级第二学期期末教学质量检测试题含解析_第3页
2022-2023学年葫芦岛市老官卜中学数学八年级第二学期期末教学质量检测试题含解析_第4页
2022-2023学年葫芦岛市老官卜中学数学八年级第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.二次根式中字母的范围为()A. B. C. D.2.下列根式中,与2不是同类二次根式的是()A.18 B.18 C.12 D.3.下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,照此规律排列下去,则第8个图中小正方形的个数是()A.48 B.63 C.80 D.994.已知样本数据,,,,,,则下列说法不正确的是()A.平均数是 B.中位数是 C.众数是 D.方差是5.甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s=5,s=12,则甲、乙两个同学的数学成绩比较稳定的是().A.甲 B.乙 C.甲和乙一样 D.无法确定6.为了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析,下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查7.下列函数中,正比例函数是()A.y= B.y=− C.y=x+4 D.y=x28.若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A.6cm B.5cm C. D.9.在下列性质中,平行四边形不一定具有的是()A.对边相等 B.对边平行 C.对角互补 D.内角和为360°10.顺次连接一个四边形的各边中点,得到了一个正方形,这个四边形最可能是()A.正方形 B.矩形 C.菱形 D.平行四边形二、填空题(每小题3分,共24分)11.如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC=23,∠DAO=300,则FB的长度为________.12.已知反比例函数的图象在第二、四象限,则取值范围是__________13.等腰三角形中,两腰上的高所在的直线所形成的锐角为35°,则等腰三角形的底角为___________14.如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________

.15.如图,在平行四边形中,,的平分线交于点,连接,若,则平行四边形的面积为__________.16.函数y=(k+1)x﹣7中,当k满足_____时,它是一次函数.17.如图所示,折叠矩形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为_____cm.18.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.三、解答题(共66分)19.(10分)如图,正方形ABCD的边长为8,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.(1)请判断△PFA与△ABE是否相似,并说明理由;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.20.(6分)百货商店销售某种冰箱,每台进价2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;每台售价每降低10元时,平均每天能多售出1台.(销售利润=销售价-进价)(1)如果设每台冰箱降价x元,那么每台冰箱的销售利润为______元,平均每天可销售冰箱______台;(用含x的代数式表示)(2)商店想要使这种冰箱的销售利润平均每天达到5600元,且尽可能地清空冰箱库存,每台冰箱的定价应为多少元?21.(6分)如图,在平面直角坐标系xOy中,已知直线AB:yx+4交x轴于点A,交y轴于点B.直线CD:yx﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.22.(8分)(1)÷﹣2×+;(2).23.(8分)某地重视生态建设,大力发展旅游业,各地旅游团纷沓而至,某旅游团上午6时从旅游馆出发,乘汽车到距离的旅游景点观光,该汽车离旅游馆的距离与时间的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:(1)求该团旅游景点时的平均速度是多少?(2)该团在旅游景点观光了多少小时?(3)求该团返回到宾馆的时刻是几时?24.(8分)列方程或方程组解应用题:几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.25.(10分)计算:(-2)(+1)26.(10分)如图,在平面直角坐标系中,各顶点的坐标分别为(1)作出关于原点成中心对称的.(2)作出点关于轴的对称点若把点向右平移个单位长度后,落在的内部(不包括顶点和边界),的取值范围,

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据二次根式有意义的条件可得a−4≥0,解不等式即可.【详解】解:由题意得:a−4≥0,解得:a≥4,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2、C【解析】

各项化简后,利用同类二次根式定义判断即可.【详解】A、原式=32,不符合题意;B、原式=24C、原式=23,符合题意;D、原式=22故选:C.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.3、C【解析】

解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【详解】∵第1个图共有3个小正方形,3=1×3;第2个图共有8个小正方形,8=2×34;第3个图共有15个小正方形,15=3×5;第4个图共有24个小正方形,24=4×6;…∴第8个图共有8×10=80个小正方形;故选C.【点睛】本题考查了规律型---图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4、D【解析】

要求平均数只要求出数据之和再除以总个数即可;根据中位数的定义可求出;对于极差是最大值与最小值的差;方差是样本中各数据与样本平均数的差的平方和的平均数.【详解】在已知样本数据1,1,4,3,5中,平均数是3;

根据中位数的定义,中位数是3,众数是3方差=1.所以D不正确.

故选:D.【点睛】本题考查平均数和中位数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.5、A【解析】

根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,∴S甲2<S乙2,∴成绩比较稳定的是甲;故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、B【解析】

总体是参加中考的15000名学生的视力情况,故A错误;1000名学生的视力是总体的一个样本,故B正确;每名学生的视力情况是总体的一个样本,故C错误;以上调查应该是抽查,故D错误;故选B.7、B【解析】

根据正比例函数、一次函数、反比例函数及二次函数的定义对各选项进行逐一分析即可.【详解】A、y=是反比例函数,故本选项错误;B、y=-是正比例函数,故本选项正确;C、y=x+4是一次函数,故本选项错误;D、y=x2是二次函数,故本选项错误.故选:B.【点睛】考查的是正比例函数的定义,熟知一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数是解答此题的关键.8、B【解析】

∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.9、C【解析】A、平行四边形的对边相等,故本选项正确;B、平行四边形的对边平行,故本选项正确;C、平行四边形的对角相等不一定互补,故本选项错误;D、平行四边形的内角和为360°,故本选项正确;故选C10、A【解析】

利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【详解】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.

∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.

∴EF=EH,EF⊥EH,

∵BD=2EF,AC=2EH,

∴AC=BD,AC⊥BD,

即四边形ABCD满足对角线相等且垂直,

选项A满足题意.

故选:A.【点睛】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.二、填空题(每小题3分,共24分)11、2【解析】

先根据矩形的性质,推理得到∠OBF=30°,BO=12BD=12AC=3,再根据含30【详解】解:∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=30°,∵EF⊥BD,∴∠BOF=90°,∵四边形ABCD是矩形,∴AD∥BC,BO=1∴∠OBF=∠ODA=30°,∴OF=12又∵Rt△BOF中,BF2-OF2=OB2,∴BF2-14BF2=32∴BF=2.【点睛】本题主要考查了矩形的性质以及勾股定理的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.12、m>5【解析】

已知反比例函数的图象在第二、四象限,所以,解得m>5,故答案为:m>5.【点睛】本题考查反比例函数的性质,掌握反比例函数的性质是解本题的关键13、17.5°或72.5°【解析】

分两种情形画出图形分别求解即可解决问题.【详解】解:①如图,当∠BAC是钝角时,由题意:AB=AC,∠AEH=∠ADH=90°,∠EHD=35°,∴∠BAC=∠EAD=360°-90°-90°-35°=145°,∴∠ABC=;②如图,当∠A是锐角时,由题意:AB=AC,∠CDA=∠BEA=90°,∠CHE=35°,∴∠DHE=145°,∴∠A=360°-90°-90°-115°=35°,∴∠ABC=;故答案为:17.5°或72.5°.【点睛】本题考查等腰三角形的性质,四边形内角和定理等知识,解题的关键是用分类讨论的思想思考问题,属于中考常考题型.14、x>1【解析】解:由图象可知:当x>1时,.故答案为:x>1.15、【解析】

根据平行四边形的性质、角平分线的性质证明AD=DE=3,再根据证明BC=BE,由此根据三角形的三线合一及勾股定理求出BF,即可求出平行四边形的面积.【详解】过点作于点,如图所示.∵是的平分线,∴.∵四边形是平行四边形,∴,∴,∴,∴,∴.∵,∴,∴BC=BE,∴,∴.∴平行四边形的面积为.故答案为:.【点睛】此题考查平行四边形的性质:对边平行且相等,对角相等,等腰三角形的等角对等边的性质、三线合一的性质,勾股定理.16、k≠﹣1.【解析】

根据一次函数的定义即可解答.【详解】根据一次函数定义得,k+1≠0,解得k≠﹣1.故答案为:k≠﹣1.【点睛】本题考查了一次函数的定义,熟知形如y=kx+b(k≠0)的函数是一次函数是解决问题的关键.17、2【解析】试题解析:∵D,F关于AE对称,所以△AED和△AEF全等,∴AF=AD=BC=10,DE=EF,设EC=x,则DE=8-x.∴EF=8-x,在Rt△ABF中,BF==6,∴FC=BC-BF=1.在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,即:x2+12=(8-x)2,解得x=2.∴EC的长为2cm.考点:1.勾股定理;2.翻折变换(折叠问题).18、【解析】试题分析:∵AB=12,BC=1,∴AD=1.∴.根据折叠可得:AD=A′D=1,∴A′B=13-1=2.设AE=x,则A′E=x,BE=12-x,在Rt△A′EB中:,解得:.三、解答题(共66分)19、(1)见解析;(2)存在,x的值为2或5.【解析】

(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【详解】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.如图,连接PE,DE,∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.如图,延长AD至点P,作PF⊥AE于点F,连接PE,若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=,∴EF=AE=.∵,∴PE=5,即x=5.∴满足条件的x的值为2或5.【点睛】此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线.20、(1),;(2)应定价2700元.【解析】

(1)销售利润=一台冰箱的利润×销售冰箱数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”;

(2)根据每台的盈利×销售的件数=5600元,即可列方程求解.【详解】解:(1)每台冰箱的销售利润为元,平均每天可销售冰箱台;(2)依题意,可列方程:解方程,得x1=120,x2=200因为要尽可能地清空冰箱库存,所以x=120舍去2900-200=2700元答:应定价2700元.点睛:本题考查了一元二次方程的应用,关键是会表示一台冰箱的利润,销售量增加的部分.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.21、(1)B(0,4),D(0,-1);(2)S(x>-2);(3)存在,满足条件的点E的坐标为(8,)或(﹣8,)或(﹣2,).【解析】

(1)利用y轴上的点的坐标特征即可得出结论;(2)先求出点M的坐标,再分两种情况讨论:①当P在y轴右边时,用三角形的面积之和即可得出结论,②当P在y轴左边时,用三角形的面积之差即可得出结论;(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.【详解】(1)∵点B是直线AB:yx+4与y轴的交点坐标,∴B(0,4).∵点D是直线CD:yx﹣1与y轴的交点坐标,∴D(0,﹣1);(2)如图1.由,解得:.∵直线AB与CD相交于M,∴M(﹣2,).∵B(0,4),D(0,﹣1),∴BD=2.∵点P在射线MD上,∴分两种情况讨论:①当P在y轴右边时,即x≥0时,S=S△BDM+S△BDP2(2+x);②当P在y轴左边时,即-2<x<0时,S=S△BDM-S△BDP2(2-|x|);综上所述:S=(x>-2).(3)如图2,由(1)知,S,当S=20时,20,∴x=3,∴P(3,﹣2).分三种情况讨论:①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GM,设E'(m,n).∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1).∵M(﹣2,),∴1,∴m=8,n,∴E'(8,);②当AB为对角线时,同①的方法得:E(﹣8,);③当MP为对角线时,同①的方法得:E''(﹣2,).综上所述:满足条件的点E的坐标为(8,)、(﹣8,)、(﹣2,).【点睛】本题是一次函数综合题,主要考查了三角形的面积的计算方法,平行四边形的性质,解(2)掌握三角形的面积的计算方法,解(3)的关键是分类讨论的思想解决问题.22、(1)3;(2)-6.【解析】分析:(1)先把各二次根式进行化简,然后再进行乘除运算,最后合并同类二次根式即可得解;(2)先把二次根式进行化简和云绝对值符号,然后再进行乘除运算,最后合并同类二次根式即可得解.详解:(1)原式===3.(2)原式==-6.点睛:熟练掌握二次根式的化简,灵活运用运算律解题.在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.23、(1)90千米/时;(2)4小时;(3)15时.【解析】

(1)根据路程除以时间等于速度,可得答案;

(2)根据路程不变,可得相应的自变量的范围;

(3)根据待定系数法,可得函数关系式,根据自变量与函数值得对应关系,可得答案.【详解】解:(1)(千米/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论