版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.点(﹣2,﹣3)关于原点的对称点的坐标是()A.(2,3) B.(﹣2,3) C.(﹣2,﹣3) D.(2,﹣3)2.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,已知B(﹣3,0)、C(2,0),则点D的坐标为()A.(4,5) B.(5,4) C.(5,3) D.(4,3)3.下列二次根式是最简二次根式的是()A. B. C. D.4.下列图形中,是轴对称图形的有()①正方形;②菱形;③矩形;④平行四边形;⑤等腰三角形;⑥直角三角形A.6个 B.5个 C.4个 D.3个5.若点P(a,a﹣2)在第四象限,则a的取值范围是()A.﹣2<a<0 B.0<a<2C.a>2 D.a<06.如图,D,E是△ABC中AB,BC边上的点,且DE∥AC,∠ACB角平分线和它的外角的平分线分别交DE于点G和H.则下列结论错误的是()A.若BG∥CH,则四边形BHCG为矩形B.若BE=CE时,四边形BHCG为矩形C.若HE=CE,则四边形BHCG为平行四边形D.若CH=3,CG=4,则CE=2.57.如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为()A.5 B. C. D.8.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是分,方差分别是,,,,你认为派谁去参赛更合适()A.甲 B.乙 C.丙 D.丁9.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y与边长x之间的关系可表示为()A.y=x2 B.y=(8﹣x)2 C.y=x(8﹣x) D.y=2(8﹣x)10.已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A. B.3 C. D.无法确定二、填空题(每小题3分,共24分)11.长方形的长是宽的2倍,对角线长是5cm,则这个长方形的长是______.12.已知一次函数,反比例函数(,,是常数,且),若其中-部分,的对应值如表,则不等式的解集是_________.13.如图,在边长为6的正方形ABCD中,点F为CD上一点,E是AD的中点,且DF=1.在BC上找点G,使EG=AF,则BG的长是___________14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.15.如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为__.16.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.17.若一次函数中,随的增大而减小,则的取值范围是______.18.一次函数y=2x-1的图象在轴上的截距为______三、解答题(共66分)19.(10分)如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.20.(6分)某班同学进行数学测验,将所得成绩(得分取整数)进行整理分成五组,并绘制成频数直方图(如图),请结合直方图提供的信息,回答下列问题:(1)该班共有多少名学生参加这次测验?(2)求1.5~2.5这一分数段的频数是多少,频率是多少?(3)若80分以上为优秀,则该班的优秀率是多少?21.(6分)定义:如图(1),,,,四点分别在四边形的四条边上,若四边形为菱形,我们称菱形为四边形的内接菱形.动手操作:(1)如图2,网格中的每个小四边形都为正方形,每个小四边形的顶点叫做格点,由个小正方形组成一个大正方形,点、在格点上,请在图(2)中画出四边形的内接菱形;特例探索:(2)如图3,矩形,,点在线段上且,四边形是矩形的内接菱形,求的长度;拓展应用:(3)如图4,平行四边形,,,点在线段上且,①请你在图4中画出平行四边形的内接菱形,点在边上;②在①的条件下,当的长最短时,的长为__________22.(8分)如图1,△ABC中,∠ABC=90°,AB=1,BC=2,将线段BC绕点C顺时旋转90°得到线段CD,连接AD.(1)说明△ACD的形状,并求出△ACD的面积;(2)把等腰直角三角板按如图2的方式摆放,顶点E在CB边上,顶点F在DC的延长线上,直角顶点与点C重合.从A,B两题中任选一题作答:A.如图3,连接DE,BF,①猜想并证明DE与BF之间的关系;②将三角板绕点C逆时针旋转α(0°<α<90°),直接写出DE与BF之间的关系.B.将图2中的三角板绕点C逆时针旋转α(0<α<360°),如图4所示,连接BE,DF,连接点C与BE的中点M,①猜想并证明CM与DF之间的关系;②当CE=1,CM=72时,请直接写出α的值23.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E、F分别是OA、OC的中点.求证:BE=DF24.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,5),B(﹣2,1),C(﹣1,1).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标,并画出△A1B1C1;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(1)将△ABC绕着点O按顺时针方向旋转90°得到△A1B1C1,写出△A1B1C1的各顶点的坐标,并画出△A1B1C1.25.(10分)在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.(1)如图1,当点与点重合时,的形状是_____________________;(1)当点在点M的左侧时,如图1.①依题意补全图1;②判断的形状,并加以证明.26.(10分)解不等式组:,并把解集在数轴上表示出来.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【详解】解:点(﹣2,﹣3)关于原点的对称点的坐标是(2,3),故选:A.【点睛】本题考查关于原点对称的点的坐标特征,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.2、B【解析】
首先根据菱形的性质和点的坐标求出AD=AB=BC=5,再利用勾股定理求出OA的长度,进而得到点D的坐标.【详解】解:∵菱形ABCD的顶点A在y轴上,B(﹣3,0),C(2,0),∴AB=AD=BC,OB=3,OC=2,∴AB=AD=BC=OB+OC=5,∴AD=AB=CD=5,∴OA===4,∴点D的坐标为(5,4).故选:B.【点睛】本题主要考查菱形的性质及勾股定理,掌握菱形的性质和勾股定理是解题的关键.3、B【解析】
根据最简二次根式的概念即可求出答案.【详解】(A)原式=2,故A不是最简二次根式;(C)原式=2,故B不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.【点睛】此题考查最简二次根式,解题关键在于掌握运算法则4、C【解析】
根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【详解】解:①正方形,是轴对称图形;②菱形,是轴对称图形;③矩形,是轴对称图形;④平行四边形,不是轴对称图形;⑤等腰三角形,是轴对称图形;⑥直角三角形,不一定,是轴对称图形,故轴对称图形共4个.故选:C.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.5、B【解析】
根据第四象限点的坐标符号,得出a>0,a﹣1<0,即可得出0<a<1,选出答案即可.【详解】解:∵点P(a,a﹣1)在第四象限,∴a>0,a﹣1<0,解得0<a<1.故选:B6、C【解析】
由∠ACB角平分线和它的外角的平分线分别交DE于点G和H可得∠HCG=90°,∠ECG=∠ACG即可得HE=EC=EG,再根据A,B,C,D的条件,进行判断.【详解】解:∵∠ACB角平分线和它的外角的平分线分别交DE于点G和H,∴∠HCG=90°,∠ECG=∠ACG;∵DE∥AC.∴∠ACG=∠HGC=∠ECG.∴EC=EG;同理:HE=EC,∴HE=EC=EG=HG;若CH∥BG,∴∠HCG=∠BGC=90°,∴∠EGB=∠EBG,∴BE=EG,∴BE=EG=HE=EC,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形;故A正确;若BE=CE,∴BE=CE=HE=EG,∴CHBG是平行四边形,且∠HCG=90°,∴CHBG是矩形,故B正确;若HE=EC,则不可以证明四边形BHCG为平行四边形,故C错误;若CH=3,CG=4,根据勾股定理可得HG=5,∴CE=2.5,故D正确.故选C.【点睛】本题考查了矩形的判定,平行四边形的性质和判定,关键是灵活这些判定解决问题.7、C【解析】
在中,根据求出OC,再利用面积法可得,由此求出AE即可.【详解】四边形ABCD是菱形,,,,在中,,,故,解得:.故选C.【点睛】此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.8、A【解析】
根据方差的意义做出判断,方差是衡量一组数据波动大小的量,方差越小,数据波动越小,数据越稳定,反之,表明数据波动大,不稳定【详解】解:∵,,,∴∵平均数一样∴选甲去参加比赛更合适故选A【点睛】本题考查了方差的意义,熟练掌握方差的意义是解题关键9、C【解析】
直接利用长方形面积求法得出答案.【详解】解:∵长方形的周长为16cm,其中一边长为xcm,∴另一边长为:(8﹣x)cm,∴y=(8﹣x)x.故选C.【点睛】此题主要考查了函数关系式,正确表示出长方形的另一边长是解题关键.10、C【解析】
根据一次函数的定义可得k-2≠0,|k|-2=1,解答即可.【详解】一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.所以|k|-2=1,解得:k=±2,因为k-2≠0,所以k≠2,即k=-2.故选:C.【点睛】本题主要考查一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.二、填空题(每小题3分,共24分)11、【解析】
设矩形的宽是a,则长是2a,再根据勾股定理求出a的值即可.【详解】解:设矩形的宽是a,则长是2a,对角线的长是5cm,,解得,这个矩形的长,故答案是:.【点睛】考查的是矩形的性质,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.12、或【解析】
根据表可求出反比例函数与一次函数的交点,然后根据交点及表格中对应的函数值即可求出等式的解集.【详解】根据表格可知,当x=-2和x=4时,两个函数值相等,∴与的交点为(-2,-4),(4,2),根据图表可知,要使,则或.故答案为:或.【点睛】本题考查了反比例函数与一次函数交点问题,熟练掌握反比例函数与一次函数的性质是解答本题的关键.13、1或2【解析】
过E作EH⊥BC于H,取,根据平行线分线段成比例定理得:BH=CH=3,证明Rt△ADF≌Rt△EHG,得GH=DF=1,可得BG的长,再运用等腰三角形的性质可得BG及的长.【详解】解:如图:过E作EH⊥BC于H,取,则AB∥EH∥CD,∵E是AD的中点,∴BH=CH=3,∵四边形ABCD是正方形,∴AD=CD=EH,∠D=∠EHG=90°,∵EG=AF,∴Rt△ADF≌Rt△EHG(HL),∴GH=DF=1,∴BG=BH−GH=3−1=1;∵∴∴故答案为:1或2.【点睛】本题主要考查了全等三角形的判定与性质,正方形的性质,掌握全等三角形的判定与性质,正方形的性质是解题的关键.14、1或1或1【解析】
本题根据题意分三种情况进行分类求解,结合三角函数,等边三角形的性质即可解题.【详解】试题分析:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴;当∠ABP=90°时(如图1),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴,在直角三角形ABP中,,如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=1,故答案为或或1.考点:勾股定理.15、或【解析】
沿着过矩形顶点的一条直线将∠B折叠,可分为两种情况:(1)过点A的直线折叠,(2)过点C的直线折叠,分别画出图形,根据图形分别求出折痕的长.【详解】(1)如图1,沿将折叠,使点的对应点落在矩形的边上的点,由折叠得:是正方形,此时:,(2)如图2,沿,将折叠,使点的对应点落在矩形的边上的点,由折叠得:,在中,,,设,则,在中,由勾股定理得:,解得:,在中,由勾股定理得:,折痕长为:或.【点睛】考查矩形的性质、轴对称的性质、直角三角形及勾股定理等知识,分类讨论在本题中得以应用,画出相应的图形,依据图形矩形解答.16、1.【解析】试题解析:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,∴∠DAQ=∠DAQ,∴△AQD是等腰三角形,∴DQ=AD=2.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=2+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.故答案为1.17、【解析】
在中,当时随的增大而增大,当时随的增大而减小.由此列不等式可求得的取值范围.【详解】解:一次函数是常数)中随的增大而减小,,解得,故答案为:.【点睛】本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,18、-1【解析】
根据截距的定义:一次函数y=kx+b中,b就是截距,解答即可.【详解】解:∵一次函数y=2x-1中b=-1,∴图象在轴上的截距为-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)利用菱形的性质得到AD=CD,∠A=∠C,进而利用AAS证明两三角形全等;(2)根据△ADE≌△CDF得到AE=CF,结合菱形的四条边相等即可得到结论.试题解析:证明:(1)∵四边形ABCD是菱形,∴AD=CD,∠A=∠C,∵DE⊥BA,DF⊥CB,∴∠AED=∠CFD=90°,在△ADE和△CDE,∵AD=CD,∠A=∠C,∠AED=∠CFD=90°,∴△ADE≌△CDE;(2)∵四边形ABCD是菱形,∴AB=CB,∵△ADE≌△CDF,∴AE=CF,∴BE=BF,∴∠BEF=∠BFE.点睛:本题主要考查了菱形的性质以及全等三角形的判定与性质,解题的关键是掌握菱形的性质以及AAS证明两三角形全等.20、(1)50;(2)频数:10频率:0.2;(3)优秀率:36%【解析】
(1)将统计图中的数据进行求和计算可得答案;(2)由图可得频数,根据频率等于频数除以总数进行计算可得答案;(3)根据直方图可得80分以上的优秀人数,再进一步计算百分比.【详解】解:(1)根据题意,该班参加测验的学生人数为4+10+18+12+6=50(人),答:该班共有50名学生参加这次测验;(2)由图可得:1.5~2.5这一分数段的频数为10,频率为10÷50=0.2;(3)由图可得:该班的优秀人数为12+6=18人,则该班的优秀率为:18÷50×100%=36%,答:该班的优秀率是36%.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21、(1)详见解析;(2)3;(3)①详见解析;②的长为【解析】
(1)以EF为边,作一个菱形,使其各边长都为;(2)如图2,连接HF,证明△DHG≌△BFE(AAS),可得CG=3;(3)①根据(2)中可知DG=BE=2,根据对角线垂直平分作内接菱形EFGH;②如图5,当F与C重合,则A与H重合时,此时BF的长最小,就是BC的长,根据直角三角形30度角的性质和勾股定理计算可得结论.【详解】(1)如图2所示,菱形即为所求;(2)如图3,连接,四边形是矩形,,,,,四边形是菱形,,,,,即,,;(3)①如图4所示,由(2)知:,,作法:作,连接,再作的垂直平分线,交、于、,得四边形即为所求作的内接菱形;②如图5,当与重合,则与重合时,此时的长最小,过作于,中,,,,,四边形是菱形,,,即当的长最短时,的长为【点睛】本题是四边形的综合题,主要考查新定义−四边形ABCD的内接菱形,基本作图−线段的垂直平分线,菱形,熟练掌握基本作图及平行四边形、菱形和矩形的性质是解题的关键.22、(1)△ACD是等腰三角形,SΔACD=2;(2)A①DE=BF,DE⊥BF,见解析;②DE=BF,DE⊥【解析】
(1)过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.可证四边形ABCE是矩形,从而AE=BC=2,AB=CE=1,可得AE垂直平分CD,从而△ACD是等腰三角形;再根据三角形的面积公式计算即可;(2)A.①根据“SAS”可证△BCF≌△DCE,从而DE=BF,∠CBF=∠CDE,延长DE交BF于点H,由∠DEC+∠CDE=90°,可证∠BEH+∠CBF=90°,所以∠BHE=90°,即DE⊥BF;②证明方法同①;B.①延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,根据“SAS”证明△MEG≌△MBC,从而BC=GE,BC∥GE,然后再证明△ECG≌△CFD,可得CG=DF,∠ECG=∠CFD,进而可证明结论成立;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.由勾股定理列方程组求出x与y的值,根据含30°角的直角三角形的性质可知∠FCH=30°,进而可求α=60°或300°.【详解】△ACD是等腰三角形,理由如下:过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.又∵∠ABC=90°,∠BCE=90°,∴四边形ABCE是矩形,∴AE=BC=2,AB=CE=1,∴CD=1,∴AE垂直平分CD,∴AC=AD,∴△ACD是等腰三角形,∴S(2)A:①DE=BF,DE⊥BF.理由如下:由旋转可知,BC=CD=2,∠BCD=90°,∵等腰直角△CEF顶点E在CB边上,顶点F在DC的延长线上,∴CE=CF,∠BCF=∠DCE=90°.在△BCF和△DCE中,BC=DC,∠BCF=∠DCE,CF=CE,∴△BCF≌△DCE(SAS),∴DE=BF,∠CBF=∠CDE,延长DE交BF于点H,∵∠DEC+∠CDE=90°,∠DEC=∠BEH,∴∠BEH+∠CBF=90°,∴∠BHE=90°,∴DE⊥BF;②DE=BF,DE⊥BF.证明方法同①;B:①CM=12DF,CM⊥DF.延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,∵M是BE的中点,∴ME=MB.在△MEG和△MBC中,ME=MB,∠EMG=∠BMC,MG=MC,∴△MEG≌△MBC(SAS),∴CM=MG=12CG,BC=GE,BC∥GE∵BC=CD,∴EG=CD.由旋转得∠BCE=α,∵BC∥GE,∴∠CEG=180°-α,∵∠DCF=360°-∠ECF-∠BCE-∠BCD=180°-α,∴∠CEG=∠DCF,在△ECG和△CFD中,CE=CF,∠CEG=∠DCF,∠CEG=∠DCF,∴△ECG≌△CFD(SAS),∴CG=DF,∠ECG=∠CFD,∵MG=MC,∴MC=12DF∵∠ECF=90°,∴∠ECG+∠FCN=∠FCD+∠FCN=90°,∴∠CNF=90°,∴DE⊥BF;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.∵CM=72,∴DF=CG=7∴x2+y∴FH=12∴∠FCH=30°,∴∠FCD=120°,∴∠BCE=60°,∴α=60°或300°.【点睛】本题考查了旋转的性质,矩形的判定与性质,线段垂直平分线的判定与性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,以及分类讨论的数学思想,正确作出辅助线是解答本题的关键.23、详见解析【解析】
根据题意可得BO=DO,再由E、F是AO、CO的中点可得EO=FO,即可证全等求出BE=DF.【详解】∵ABCD是平行四边形,∴BO=DO,AO=CO,∵E、F分别是OA、OC的中点,∴EO=FO,又∵∠COD=∠BOE,∴△BOE≌△DOF(SAS),∴BE=DF.【点睛】本题考查三角形全等,关键在于由平行四边形的性质得出有用的条件,再根据图形判断全等所需要的条件.24、(1)图形见解析;A1的坐标为(2,2),B1点的坐标为(1,﹣2);(2)图形见解析;A2(1,﹣5),B2(2,﹣1),C2(1,﹣1);(1)图形见解析;A1(5,1),B1(1,2),C1(1,1).【解析】
(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(1)利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阳光健康演讲稿
- 《供配电技术》第7章 教案
- 就餐的礼仪(31篇)
- 芒种活动总结
- 股权分配的协议书(33篇)
- 2024年多晶氟化镁(MGF2)项目投资申请报告代可行性研究报告
- DB12-T 736-2023 大型活动特种设备安全保障性检验规范 电梯
- 2024年涂装机项目资金申请报告代可行性研究报告
- 2024年插拔力试验机项目资金筹措计划书代可行性研究报告
- 2024-2025学年重庆市涪陵五中高三上学期开学考生物试题及答案
- 真想变成大大的荷叶(详案)
- 原生家庭与个人成长(课堂PPT)
- 货代公司规章制度管理办法范本
- 医学英语教程(2)ppt课件
- 上交叉与下交叉综合征(课堂PPT)
- 物理图库(几乎包含所有初中物理图片)
- 铜仁市房地产市场调查分析报告专业课件
- 中南大学湘雅医院亚专科管理办法(试行)
- 矿山监理规划
- 常用气体分子直径
- 【模板】停送电检修作业票模板
评论
0/150
提交评论