版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图①,在边长为4的正方形ABCD中,点P以每秒2cm的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动2.5秒时,PQ的长是()A.2cm B.3cm C.4cm D.5cm2.下列条件中能构成直角三角形的是()A.a=3,b=4,c=6 B.a=5,b=6,c=7C.a=6,b=8,c=9 D.a=5,b=12,c=133.乒乓球是我国的国球,也是世界上流行的球类体育项目.我国乒乓球名将与其对应身高如下表所示:乒乓球名将刘诗雯邓亚萍白杨丁宁陈梦孙颖莎姚彦身高(cm)160155171173163160175这些乒乓球名将身高的中位数和众数是()A.160,163 B.173,175 C.163,160 D.172,1604.在“美丽乡村”评选活动中,某乡镇5个村的得分如下:90,88,96,92,96,这组数据的中位数和众数分别是()A.90,96 B.92,96 C.92,98 D.91,925.顺次连接矩形四边中点得到的四边形一定是()A.梯形 B.正方形 C.矩形 D.菱形6.如图,在正方形外取一点,连接、、,过点作的垂线交于点.若,,下列结论:①;②;③点到直线的距离为;④;⑤正方形.其中正确的是()A.①②③④ B.①②④⑤ C.①③④ D.①②⑤7.一次函数y=2x﹣1的图象大致是()A. B. C. D.8.下列各式:中,是分式的有()A.1个 B.2个 C.3个 D.4个9.点A(m+4,m)在平面直角坐标系的x轴上,则点A关于y轴对称点的坐标为()A. B. C. D.10.二次根式中字母的范围为()A. B. C. D.11.下列说法中正确的是()A.四边相等的四边形是正方形B.一组对边相等且另一组对边平行的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线相等的平行四边形是矩形12.如图,矩形沿折叠,使点落在边上的点处,如果,那么的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.14.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.15.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为基本图案通过连续四次旋转所组成,这四次旋转中,旋转角度最小是______°.16.把化为最简二次根式,结果是_________.17.一个不透明的布袋中装有分别标着数字1,2,3,4的四张卡片,现从袋中随机摸出两张卡片,则这两张卡片上的数字之和大于5的概率为_______.18.如图,菱形的对角线、相交于点,过点作直线分别与、相交于、两点,若,,则图中阴影部分的面积等于______.三、解答题(共78分)19.(8分)先化简,再求的值,其中x=220.(8分)如图,一次函数y=kx+b(k≠0)经过点B(0,1),且与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).(1)求一次函数与反比例函数的解析式;(2)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?21.(8分)解不等式组,把它的解集在数轴上表示出来,并写出这个不等式组的正整数解.22.(10分)解不等式组23.(10分)(1)发现规律:特例1:===;特例2:===;特例3:=4;特例4:______(填写一个符合上述运算特征的例子);(2)归纳猜想:如果n为正整数,用含n的式子表示上述的运算规律为:______;(3)证明猜想:(4)应用规律:①化简:×=______;②若=19,(m,n均为正整数),则m+n的值为______.24.(10分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.25.(12分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.26.解方程:请选择恰当的方法解方程(1)3(x﹣5)2=2(5﹣x);(2)3x2+5(2x+1)=1.
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:点P运动2.5秒时P点运动了5cm,CP=8-5=3cm,由勾股定理,得PQ=cm,故选B.考点:动点函数图象问题.2、D【解析】
由勾股定理的逆定理,判定的是直角三角形.【详解】A.32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B.52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C.62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D.52+122=132,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选D.【点睛】本题考查勾股定理的逆定理,如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.3、C【解析】
根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;【详解】解:把数据从小到大的顺序排列为:155,1,1,2,171,173,175;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是2,那么由中位数的定义可知,这组数据的中位数是2.故选:C.【点睛】此题考查中位数与众数的意义,掌握基本概念是解决问题的关键.4、B【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】众数是一组数据中出现次数最多的数,在这一组数据中96出现了2次,次数最多,故众数是96;将这组数据从小到大的顺序排列为:88,90,1,96,96,处于中间位置的那个数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、D【解析】
根据顺次连接矩形的中点,连接矩形的对边上的中点,可得新四边形的对角线是互相垂直的,并且是平行四边形,所以可得新四边形的形状.【详解】根据矩形的中点连接起来首先可得四边是相等的,因此可得四边形为菱形,故选D.【点睛】本题主要考查对角线互相垂直的判定定理,如果四边形的对角线互相垂直,则此四边形为菱形.6、D【解析】
①利用同角的余角相等,易得∠EDC=∠PDA,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠CED,结合三角形的外角的性质,易得∠CEP=90°,即可证;③过C作CF⊥DE,交DE的延长线于F,利用②中的∠BEP=90°,利用勾股定理可求CE,结合△DEP是等腰直角三角形,可证△CEF是等腰直角三角形,再利用勾股定理可求EF、CF;⑤在Rt△CDF中,利用勾股定理可求CD2,即是正方形的面积;④连接AC,求出△ACD的面积,然后减去△ACP的面积即可.【详解】解:①∵DP⊥DE,∴∠PDE=90°,∴∠PDC+∠EDC=90°,∵在正方形ABCD中,∠ADC=90°,AD=CD,∴∠PDC+∠PDA=90°,∴∠EDC=∠PDA,在△APD和△CED中∴(SAS)(故①正确);②∵,∴∠APD=∠CED,又∵∠CED=∠CEA+∠DEP,∠APD=∠PDE+∠DEP,∴∠CEA=∠PDE=90°,(故②正确);③过C作CF⊥DE,交DE的延长线于F,∵DE=DP,∠EDP=90°,∴∠DEP=∠DPE=45°,又∵②中∠CEA=90°,CF⊥DF,∴∠FEC=∠FCE=45°,∵,∠EDP=90°,∴∴,∴CF=EF=,∴点C到直线DE的距离为(故③不正确);⑤∵CF=EF=,DE=1,∴在Rt△CDF中,CD2=(DE+EF)2+CF2=,∴S正方形ABCD=CD2=(故⑤正确);④如图,连接AC,∵△APD≌△CED,∴AP=CE=,∴=S△ACD﹣S△ACP=S正方形ABCD﹣×AP×CE=×()﹣××=.(故④不正确).故选:D.【点睛】本题利用了全等三角形的判定和性质、正方形的性质、正方形和三角形的面积公式、勾股定理等知识,综合性比较强,得出,进而结合全等三角形的性质分析是解题关键.7、B【解析】
根据一次函数的性质,判断出k和b的符号即可解答.【详解】由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选B.【点睛】本题考查了一次函数y=kx+b图象所过象限与k,b的关系,当k>0,b<0时,函数图象经过一、三、四象限.8、D【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:是分式,共4个故选:D.【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.9、A【解析】解:∵点A(m+4,m)在平角直角坐标系的x轴上,∴m=0,∴点A(4,0),∴点A关于y轴对称点的坐标为(-4,0).故选A.10、B【解析】
根据二次根式有意义的条件可得a−4≥0,解不等式即可.【详解】解:由题意得:a−4≥0,解得:a≥4,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.11、D【解析】
正方形:有一个角是直角且有一组邻边相等的平行四边形.平行四边形:有两组对边分别平行的四边形.菱形:在一个平面内,有一组邻边相等的平行四边形.矩形:有一个角是直角的平行四边形,矩形也叫长方形.【详解】A选项中四边相等的四边形不能证明是正方形,有可能是菱形.则A错误.B选项一组对边相等且另一组对边平行的四边形不一定是平行四边形,有可能是等腰梯形,所以B错误.C选项中,对角线互相垂直,不能判定四边形是菱形.根据正方形、平行四边形、菱形、矩形的性质与判定,即可得出本题正确答案为D.【点睛】本题的关键在于:熟练掌握正方形、平行四边形、菱形、矩形的性质与判定.12、C【解析】
先由矩形的性质折叠的性质得出∠AFE=∠D=90°,从而得出∠CFE=60°,在利用直角三角形的性质即可.【详解】∵四边形ABCD是矩形,∴∠C=∠D=90°,由折叠得,∠AFE=∠D=90°,∴∠BFA+∠CFE=90°,∴∠CFE=90°-∠BFA=60°,∵∠C=90°,∴∠CEF=90°-∠CFE=30°,故选C.【点睛】此题主要考查了矩形的性质,折叠的性质,直角三角形的性质,解本题的关键是求出∠CFE.二、填空题(每题4分,共24分)13、三角形的三个内角都小于60°【解析】
熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.14、1【解析】
根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=1cm.故答案是:1.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.15、72【解析】试题解析:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是∴这四次旋转中,旋转角度最小是故答案为72.16、【解析】
直接利用二次根式的性质化简求出答案.【详解】.故答案为.【点睛】本题考查了二次根式的性质与化简,正确开平方是解题的关键.17、【解析】
根据题意先画出树状图,求出所有出现的情况数,再根据概率公式即可得出答案.【详解】根据题意画树状图如下:共有12种情况,两张卡片上的数字之和大于5的有4种,则这两张卡片上的数字之和大于5的概率为;故答案为:.【点睛】此题考查列表法与树状图法,解题关键在于题意画树状图.18、【解析】
根据菱形的性质可证≌,可将阴影部分面积转化为△AOB的面积,根据菱形的面积公式计算即可.【详解】四边形是菱形∴OC=OA,AB∥CD,∴∴≌(ASA)∴S△CFO=S△AOE∴S△CFO+S△EBO=S△AOB∴S△AOB=SABCD=×故答案为:.【点睛】此题考查了菱形的性质,菱形的面积公式,全等三角形的判定,将阴影部分的面积转化为三角形AOB的面积为解题的关键.三、解答题(共78分)19、,.【解析】
首先把分式利用通分、约分化简,然后代入数值计算即可求解.【详解】解:===,当x=3时,原式==.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则是解题的关键.20、(1)y=x+1;y=;(2)当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【解析】
(1)把点A、B坐标代入y=kx+b,把点A的坐标代入y=,根据待定系数法即可求得一次函数与反比例函数的解析式;(2)联立方程,求得得一次函数与反比例函数的图象交点坐标,然后利用函数图象的位置关系求解.【详解】(1)∵一次函数y=kx+b(k≠0)经过点A(1,2),点B(0,1),∴,解得k=1,b=1∴一次函数解析式为y=x+1;∵点A(1,2)在反比例函数y=的图象上,∴m=1×2=2,∴反比例函数解析式为y=;(2)∵方程组的解为或,∴一次函数与反比例函数的图象交点坐标为(1,2)、(﹣2,﹣1),∴当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21、;见解析;.【解析】
首先求出每个不等式的解集,找到公共解集,然后在数轴上表示出来,根据数轴写出正整数解即可.【详解】解:,解不等式①,得解不等式②,得所以,原不等式组的解集是在数轴上表示为:不等式组的正整数解是【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集、一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式组的方法.22、1≤x<6.1【解析】
分别解两个不等式,最后求公共部分即可.【详解】解:,解不等式①得:x≥1,解不等式②得:x<6.1,所以不等式组的解集为:1≤x<6.1.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23、(1);(2);(3)见解析;(4)①2121;②m+n=2【解析】
(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题;(4)①②根据(2)中的规律即可求解.【详解】解:(1),故答案为:;(2),故答案为:;(3)证明:∵左边=,∵n为正整数,∴n+1>1.∴左边=|n+1(n+1),又∵右边=(n+1),∴左边=右边.即;(4)①×=2121×=2121;故答案为:2121;②∵=19,∴m+1=19,解得m=18,∴n=m+2=21,∴m+n=2.【点睛】本题考查规律型:数字的变化类,二次根式的混合运算,解答本题的关键是明确题意,根据已知等式总结一般规律并应用规律解题.24、(1)直线AB的解析式为y=1x﹣1,(1)点C的坐标是(1,1).【解析】
待定系数法,直线上点的坐标与方程的.(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣1)分别代入解析式即可组成方程组,从而得到AB的解析式.(1)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=1求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.【详解】解:(1)设直线AB的解析式为y=kx+b,∵直线AB过点A(1,0)、点B(0,﹣1),∴{k+b∴直线AB的解析式为y=1x﹣1.(1)设点C的坐标为(x,y),∵S△BOC=1,∴12•1•x=1,解得x=1∴y=1×1﹣1=1.∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作计划书范例
- it人员工作计划
- 学校教学工作计划的年度修订与调整机制及应对策略
- 生产部工作计划模板
- 八年级美术教学工作计划博客
- 黔西精神病院依法行医定期与不定期检查工作计划
- 鞋创业计划书分享
- 2024年天然气公司年度工作计划
- 英语七下课外活动计划 小学英语课外活动计划
- 班主任工作计划-2024年五年级班主任工作计划
- 【MOOC】高级财务会计-南京财经大学 中国大学慕课MOOC答案
- 2024年广西普法题库及答案(第1套)
- 动画制作员(高级工)技能鉴定理论考试题库(含答案)
- GB/T 34430.5-2024船舶与海上技术保护涂层和检查方法第5部分:涂层破损的评估方法
- 2023年北京市东城初三一模数学试卷及答案
- 妇幼健康信息管理制度
- 充电桩备案申请书
- 差序格局活动课
- 2024年人教版八年级物理上册期末考试卷(附答案)
- 2024年新课标卷高考化学试卷试题真题答案详解(精校打印版)
- 国开电大软件工程形考作业3参考答案
评论
0/150
提交评论