版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.使有意义的a的取值范围为()A.a≥1 B.a>1 C.a≥﹣1 D.a>﹣12.已知一次函数,随的增大而减小,则的取值范围是()A. B. C. D.3.使分式无意义,则x的取值范围是()A.x≠1 B.x=1 C.x<1 D.x≠-14.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.9 B.35 C.45 D.无法计算5.下列变形不正确的是(
)A. B. C. D.6.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1B.x+1C.x2﹣1D.(x﹣1)27.如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四边形EFGH的周长等于2AB.其中正确的个数是()A.1 B.2 C.3 D.48.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54° B.60° C.66° D.72°9.下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有()A.1个 B.2个 C.3个 D.4个10.如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是()A.(﹣1,) B.(﹣,1) C.(,﹣1) D.(1,﹣)二、填空题(每小题3分,共24分)11.若对于的任何值,等式恒成立,则__________.12.如图,OC平分∠AOB,P在OC上,PD⊥OA于D,PE⊥OB于E.若PD=3cm,则PE=_____cm.13.分解因式_____.14.如图,的周长为,与相交于点,交于,则的周长为__________.15.如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是______平方米.16.如图,在平面直角坐标系中,菱形OABC的顶点O是原点,顶点B在y轴正半轴上,顶点A在第一象限,菱形的两条对角线长分别是8和6,函数y=kx(x<0)的图象经过点C,则k的值为________17.已知关于的方程的解是正数,则的取值范围是__________.18.某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)三、解答题(共66分)19.(10分)在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AC=BD,AC、BD相交于点G,过点A作AE//DB交CB的延长线于点E,过点B作BF//CA交DA的延长线于点F,AE、BF相交于点H.(1)证明:ΔABD≌△BAC.(2)证明:四边形AHBG是菱形.(3)若AB=BC,证明四边形AHBG是正方形.20.(6分)如图1,已知直线:交轴于,交轴于.(1)直接写出的值为______.(2)如图2,为轴负半轴上一点,过点的直线:经过的中点,点为轴上一动点,过作轴分别交直线、于、,且,求的值.(3)如图3,已知点,点为直线右侧一点,且满足,求点坐标.21.(6分)计算:16﹣(π﹣2019)0+2﹣1.22.(8分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且,连接BE,求证:.23.(8分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.24.(8分)计算:(1)+﹣(2)2÷5(3)(+3﹣)÷(4)(2﹣3)2﹣(4+3)(4﹣3)25.(10分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.26.(10分)已知点A及第一象限的动点,且,设△OPA的面积为S.(1)求S关于的函数解析式,并写出的取值范围;(2)画出函数S的图象,并求其与正比例函数的图象的交点坐标;(3)当S=12时,求P点坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据二次根式有意义的条件:被开方数是非负数列不等式,解之即可得出答案.【详解】∵有意义,∴,解得a≥﹣1.故选C.【点睛】本题考查了二次根式有意义的条件.利用二次根式定义中的限制性条件:被开方数是非负数列出不等式是解题的关键.2、B【解析】
根据一次函数的图像性质即可求解.【详解】依题意得k-2<0,解得故选B.【点睛】此题主要考查一次函数的性质,解题的关键是熟知k的性质.3、B【解析】
要是分式无意义,分母必等于0.【详解】∵分式无意义,
∴x-1=0,
解得x=1.
故选:B.【点睛】考核知识点:分式无意义的条件.熟记无意义的条件是关键.4、C【解析】【分析】由勾股定理求出BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,再代入可得MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2),化简可求得结果.【详解】在Rt△ABD和Rt△ADC中,BD2=AB2-AD2,CD2=AC2-AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2)=AC2-AB2=1.故选C【点睛】本题考核知识点:勾股定理.解题关键点:灵活运用勾股定理.5、D【解析】
根据分式的基本性质:分式的分子和分母扩大还是缩小相同的倍数,分式的值不变进行解答.【详解】,A正确;,B正确;,C正确;,D错误,故选D.【点睛】本题考查的是分式的基本性质,解题的关键是正确运用分式的基本性质和正确把分子、分母进行因式分解.6、A【解析】试题分析:分别将多项式与多项式进行因式分解,再寻找他们的公因式.本题解析:多项式:,多项式:,则两多项式的公因式为x-1.故选A.7、C【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长=EF=FG=GH=HE=2AB,故⑤正确,没有条件可证明EG=BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.8、D【解析】
过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.【详解】过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°-108°=72°.故选D.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.9、D【解析】
分别写出各个命题的逆命题,根据平行四边形的判定定理判断即可.【详解】解:平行四边形的两组对边分别相等的逆命题是两组对边分别相等的四边形是平行四边形,是真命题;平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;平行四边形的两组对边分别平行的逆命题是两组对边分别平行的四边形是平行四边形,是真命题;平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题。故选:D【点睛】本题考查的是命题的真假判断和逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.10、B【解析】
过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【详解】如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90−60=30,∴OC=2×cos30=2×=,A′C=2×=1,∵点A′在第二象限,∴点A′(﹣,1).故选:B.【点睛】本题考查了坐标与图形变化−旋转,等边三角形的性质,根据旋转的性质求出∠A′OC=30,然后解直角三角形求出点A′的横坐标与纵坐标的长度是解题的关键.二、填空题(每小题3分,共24分)11、【解析】
先通分,使等式两边分母一样,然后是使分子相等,可以求出结果。【详解】3x-2=3x+3+mm=-5故答案为:-5【点睛】此题考查分式的化简求值,掌握运算法则是解题关键12、3【解析】
根据角平分线上的点到角的两边的距离相等求解即可.【详解】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PE=PD=3cm.故答案为;3【点睛】本题主要考查了角平分线的定义,角平分线上的点到角的两边的距离相等,熟记性质是解题的关键.13、【解析】
提取公因数4,再根据平方差公式求解即可.【详解】故答案为:【点睛】本题考查了因式分解的问题,掌握平方差公式是解题的关键.14、1【解析】
根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,OE⊥AC可说明EO是线段AC的中垂线,中垂线上任意一点到线段两端点的距离相等,则AE=CE,再利用平行四边形ABCD的周长为20可得AD+CD=1,进而可得△DCE的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,点O平分BD、AC,即OA=OC,又∵OE⊥AC,∴OE是线段AC的中垂线,∴AE=CE,∴AD=AE+ED=CE+ED,∵▱ABCD的周长为20cm,∴CD+AD=1cm,∴的周长=CE+ED+CD=AD+CD=1cm,故答案为:1.【点睛】本题考查平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形平行四边形的对边相等.平行四边形的对角线互相平分.15、144米1.【解析】
将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.【详解】解:将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为10-1=18(米),宽为10-1=8(米),则草地面积为18×8=144米1.故答案为:144米1.【点睛】本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.16、-12.【解析】
根据题意可得点C的坐标为(-4,3),将点C的坐标代入y=kx中求得k值即可【详解】根据题意可得点C的坐标为(-4,3),将点C的坐标代入y=kx3=k-4解得k=-12.故答案为:-12.【点睛】本题考查了菱形的性质及求反比例函数的解析式,求得点C的坐标为(-4,3)是解决问题的关键.17、m>-6且m-4【解析】试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.试题解析:分式方程去分母得:2x+m=3(x-2),解得:x=m+6,根据题意得:x=m+6>0,且m+6≠2,解得:m>-6,且m≠-4.考点:分式方程的解.18、(1-x)2【解析】
根据题意即可列出代数式.【详解】∵某种手机每部售价为元,如果每月售价的平均降低率为,则一个月后的售价为(1-x)故两个月后的售价为(1-x)2【点睛】此题主要考查列代数式,解题的关键是根据题意找到数量关系.三、解答题(共66分)19、(1)详见解析;(2)详见解析.【解析】
(1)由“HL”可证明Rt△ABC≌Rt△BAD(HL);(2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,可得GA=GB,从而得到平行四边形AHBG是菱形.(3)根据有一个角是直角的菱形是正方形,进行判断即可.【详解】解:(1)∵AB=BA,AC=BD,∴Rt△ABC≌Rt△BAD(HL).(2)∵AH//GB,BH//GA,∴四边形AHBG是平行四边形.∵△ABC≌Rt△BAD,∴∠ABD=∠BAC,∴GA=GB,∴平行四边形AHBG是菱形.(3)∵AB=BC,∠ABC=90∴△ABC是等腰直角三角形,∴∠BAG=45°,又∵△ABC≌△BAD,∴∠ABG=∠BAG=45°,∴∠AGB=90°,∴菱形AHBG是正方形.【点睛】本题考查了正方形的判定,全等三角形的判定与性质,平行四边形的判定与性质等几何知识的综合运用,解题时注意:先判定四边形是菱形,再判定这个菱形有一个角为直角即可得到正方形.20、(1)k=-1;(2)或;(3)【解析】
(1)将代入,求解即可得出;(2)先求得直线为,用含t的式子表示MN,根据列出方程,分三种情况讨论,可得到或;(3)在轴上取一点,连接,作交直线于,作轴于,再证出,得到直线的解析式为,将代入,得,可得出.【详解】解:(1)将代入,得,解得.故答案为:(2)∵在直线中,令,得,∴,∵,∴线段的中点的坐标为,代入,得,∴直线为,∵轴分别交直线、于、,,∴,,∴,,∵,∴,分情况讨论:①当时,,解得:.②当时,,解得:.③当时,,解得:,舍去.综上所述:或.(3)在轴上取一点,连接,作交直线于,作轴于,∴,∴,∵,∴,∵,∴,∴,∴,∴,∴,∴,∴,,∴,∴,∴直线的解析式为,将代入,得,∴.【点睛】本题考查一次函数与几何的综合.要准确理解题意,运用数形结合、分类讨论的思想解答.21、3【解析】
本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:原式=4-1+1【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.22、证明见解析【解析】
由平行四边形性质得,,,又证≌,可得,.【详解】证明:四边形ABCD是平行四边形,,,,,,,在和中,,≌,.【点睛】本题考核知识点:平行四边形性质,全等三角形.解题关键点:由全等三角形性质得到线段相等.23、(1)详见解析;(2)详见解析;(3)详见解析.【解析】
(1)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质即可证得CF=EF;(2)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论;(3)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论.【详解】(1)证明:如图1,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF;(2)如图2,连接BF,∵△ABC≌△DBE,∴BC=BE,AC=DE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴EF=CF,∴AF+EF=AF+CF=AC=DE;(3)如图3,连接BF,∵△ABC≌△DBE,∴BC=BE,AC=DE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF,∵AC=DE,∴AF=AC+FC=DE+EF.【点睛】本题考查了全等三角形的性质与判定,证明Rt△BCF≌Rt△BEF是解决问题的关键.24、(1)(2)(3)(4)49-12【解析】
(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的乘除法则运算,然后化简后合并即可;(3)原式利用二次根式的除法法则计算即可得到结果;(4)原式利用完全平方公式和平方差公式变形,计算即可得到结果.【详解】(1)+﹣,=,=;(2)2÷5,=,=,=;(3)(+3﹣)÷,=,=,=;(4)(2﹣3)2﹣(4+3)(4﹣3),=,=49-.【点睛】此题考查了二次根式的运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版通讯器材购销合同3篇
- 2025年度大型活动场地租赁及服务合同4篇
- 2025年PVC管道产品检测与质量保证服务合同范本3篇
- 2025年消防给水系统设备及工程安全防护合同3篇
- 2025年度餐饮股份合作人力资源合作协议3篇
- 2024版跨国投资风险共保协议版B版
- 二零二五版国有控股企业股权置换与混合所有制改革合同3篇
- 2025年度消防安全通道维护外包服务合同3篇
- 2024移动支付技术服务合同
- 2024版暂定协议总价协议样本版B版
- 副厂长竞聘演讲稿
- 高二物理题库及答案
- 2024年河北省廊坊市广阳区中考一模道德与法治试题
- 电影项目策划书
- 产业园区金融综合服务创新蓝皮书(2024.1)
- 高一数学单元练习卷
- 国际标准IQ测试题及答案样本
- 美容院管理制度章程
- 职业发展展示园林
- 统编版六年级下册语文1-6单元习作课件
- 社会安全风险评估模型的研究
评论
0/150
提交评论