




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.正五边形的每个内角度数是(
)A.60°
B.90°
C.108°D.120°2.在函数y=x+3中,自变量x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x<﹣3 D.x>﹣33.如图,直线y=kx+b与坐标轴的两交点分别为A(2,0)和B(0,-3),则不等式kx+b+3≤0的解为()A.x≤0B.x≥0C.x≥2D.x≤24.点P(-2,3)到x轴的距离是()A.2 B.3 C. D.55.用配方法解方程x2﹣x﹣1=0时,应将其变形为()A.(x﹣)2= B.(x+)2=C.(x﹣)2=0 D.(x﹣)2=6.矩形与矩形如图放置,点共线,点共线,连接,取的中点,连接.若,则的长为A. B. C. D.7.下列图案既是轴对称图形,又是中心对称图形的是()A.4个 B.3个 C.2个 D.1个8.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A.x<-2 B.-2<x<-1 C.-2<x<0 D.-1<x<09.如图,有一个矩形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF的长为()A.5 B.6 C.7 D.810.下列各式中,不是最简二次根式的是()A. B. C. D.11.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣212.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点 B.y随x的增大而增大C.图象经过第二、四象限 D.当x=13时,y=二、填空题(每题4分,共24分)13.一组数据2,3,2,3,5的方差是__________.14.使函数有意义的的取值范围是________.15.若三角形的一边长为,面积为,则这条边上的高为______.16.已知,,,,五个数据的方差是.那么,,,,五个数据的方差是______.17.已知一个多边形的内角和为540°,则这个多边形是______边形.18.分解因式:9x2y﹣6xy+y=_____.三、解答题(共78分)19.(8分)甲、乙两车分别从、两地同时出发,甲车匀速前往地,到达地后立即以另一速度按原路匀速返回到地;乙车匀速前往地,设甲、乙两车距地的路程为(千米),甲车行驶的时间为时),与之间的函数图象如图所示(1)甲车从地到地的速度是__________千米/时,乙车的速度是__________千米/时;(2)求甲车从地到达地的行驶时间;(3)求甲车返回时与之间的函数关系式,并写出自变量的取值范围;(4)求乙车到达地时甲车距地的路程.20.(8分)(1)化简:;(2)先化简,再求值:;其中a2,b21.(8分)如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线,交于点C.(1)求点D的坐标;(2)求直线的解析表达式;(3)求△ADC的面积;(4)在直线上存在异于点C的另一点P,使得△ADP的面积是△ADC面积的2倍,请直接写出点P的坐标.22.(10分)为了解某校八年级150名女生的身高情况,从中随机抽取10名女生,测得身高并绘制如下条形统计图.(1)求出这10名女生的身高的中位数和众数;(2)依据样本估计该校八年级全体女生的平均身高;(3)请你根据这个样本,在该校八年级中,设计一个挑选50名女生组成方队的方案(要求选中女生的身高尽可能接近).23.(10分)如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,请利用因式分解求出剩余阴影部分的面积(结果保留π)24.(10分)阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=;(2)计算:(1+i)×(3-4i);(3)计算:i+i2+i3+…+i1.25.(12分)先化简,再求值:其中a=1.26.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班195np8.4(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】
先根据多边形的内角和公式(n-2)•180°求出内角和,然后除以5即可;【详解】根据多边形内角和定理可得:(5-2)•180°=540°,
540°÷5=108°;故选:C.【点睛】考查了正多边形的内角与外角的关系,解题关键熟记、运用求多边形内角和公式(n-2)•180°.2、B【解析】
根据二次根式有意义的条件列出不等式即可.【详解】解:根据题意得:x+3≥0解得:x≥-3所以B选项是正确的.【点睛】本题考查二次根式及不等式知识,解题时只需找出函数有意义必须满足的条件列出不等式即可,对于一些较复杂的函数一定要仔细.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3、A.【解析】试题分析:由kx+b+3≤1得kx+b≤-3,直线y=kx+b与y轴的交点为B(1,-3),即当x=1时,y=-3,∵函数值y随x的增大而增大,∴当x≥1时,函数值kx+b≥-3,∴不等式kx+b+3≥1的解集是x≥1.故选A.考点:一次函数与一元一次不等式.4、B【解析】
直接利用点的坐标性质得出答案.【详解】点P(-2,1)到x轴的距离是:1.故选B.【点睛】此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.5、D【解析】分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.详解:∵x2﹣x﹣1=0,∴x2﹣x=1,∴x2﹣x+=1+,∴(x﹣)2=.故选D.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6、A【解析】
延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【详解】解:如图,延长GH交AD于点P,
∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=3、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,∵∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD-AP=3-1=2,
∵CG=EF=3、CD=1,
∴DG=2,△DGP是等腰直角三角形,
则GH=PG=×故选:A.【点睛】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.7、B【解析】
轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.【详解】解:选项B只是轴对称图形,其它三个均既是轴对称图形,又是中心对称图形,故选B.【点睛】本题考查轴对称图形与中心对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.8、B【解析】试题分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.9、B【解析】
根据矩形的性质得到CD=AB=8,根据勾股定理求出CF,根据勾股定理列方程计算即可.【详解】∵四边形ABCD是矩形,∴CD=AB=8,∴DE=CD﹣CE=5,由折叠的性质可知,EF=DE=5,AF=CD=BC,在Rt△ECF中,CF==4,由勾股定理得,AF2=AB2+BF2,即(BF+4)2=82+BF2,解得,BF=6,故选:B.【点睛】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10、A【解析】
根据最简二次根式的定义即可判断.【详解】解:A、=,故不是最简二次根式;B、是最简二次根式;C、是最简二次根式;D、是最简二次根式.故本题选择A.【点睛】掌握判断最简二次根式的依据是解本题的关键.11、C【解析】试题分析:函数图像的平移法则为:上加下减,左加右减,则直线y=2x向左平移1个单位后的直线解析式为:y=2(x+1)=2x+2.12、C【解析】
根据正比例函数的性质直接解答即可.【详解】解:A、显然当x=0时,y=0,故图象经过原点,错误;B、k<0,应y随x的增大而减小,错误;C、k<0,图解经过二、四象限,正确;D、把x=13代入,得:y=-1故选C.【点睛】本题考查了正比例函数的性质,解题的关键是了解正比例函数的比例系数的符号与正比例函数的关系.二、填空题(每题4分,共24分)13、1.2【解析】
解:先求出平均数(2+3+2+3+5)5=3,再根据方差公式计算方差=即可14、且【解析】
根据被开方数是非负数且分母不能为零,可得答案.【详解】解:由题意,得解得x>-3且.
故答案为:x>-3且.【点睛】本题考查函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.15、4【解析】
利用面积公式列出关系式,将已知面积与边长代入即可求出高.【详解】解:根据题意得:÷×2=4.【点睛】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.16、1【解析】
方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变.【详解】由题意知,设原数据的平均数为,新数据的每一个数都加了1,则平均数变为+1,
则原来的方差S11=[(x1-)1+(x1-)1+…+(x5-)1]=1,
现在的方差S11=[(x1+1--1)1+(x1+1--1)1+…+(x5+1--1)1]
=[(x1-)1+(x1-)1+…+(x5-)1]=1,
所以方差不变.
故答案为1.【点睛】本题考查了方差,注意:当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.17、5.【解析】设这个多边形是n边形,由题意得,(n-2)×180°=540°,解之得,n=5.18、y(3x﹣1)1.【解析】
首先提公因式y,再利用完全平方公式进行二次分解.【详解】解:原式=y(9x1﹣6x+1)=y(3x﹣1)1,故答案为:y(3x﹣1)1.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.三、解答题(共78分)19、(1);(2)甲车从地到达地的行驶时间是2.5小时;(3)甲车返回时与之间的函数关系式是;(4)乙车到达地时甲车距地的路程是175千米.【解析】
(1)根据题意列算式计算即可得到结论;(2)根据题意列算式计算即可得到结论;(3)设甲车返回时与之间的函数关系式为y=kt+b,根据题意列方程组求解即可得到结论;(4)根据题意列算式计算即可得到结论.【详解】解:(1)甲车从A地开往B地时的速度是:180÷1.5=120千米/时,乙车从B地开往A地的速度是:(300-180)÷1.5=80千米/时,
故答案为:120;80;(2)(小时)答:甲车从地到达地的行驶时间是2.5小时(3)设甲车返回时与之间的函数关系式为,则有解得:,∴甲车返回时与之间的函数关系式是(4)小时,把代入得:答:乙车到达地时甲车距地的路程是175千米.【点睛】本题考查了待定系数法及一次函数的解析式的运用,行程问题的数量关系的运用,解答时正确看图理解题意和求出一次函数的解析式是关键.20、(1)﹣7a2b﹣6ab2﹣3c;(2),1.【解析】
(1)先去括号,然后合并同类项即可得出答案.(2)本题的关键根据去括号与合并同类项的法则将代数式化简,然后把给定的值代入求值.【详解】(1)原式=5a2b﹣10ab2+5c﹣8c﹣1a2b+4ab2=﹣7a2b﹣6ab2﹣3c;(2)原式a﹣2ab2a+2b2=﹣3ab2当a=﹣2,b时,原式=-3×(-2)6+6=1.【点睛】(1)本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.(2)本题考查了整式的混合运算,主要考查了单项式与多项式相乘以及合并同类项的知识点.关键是去括号,去括号要特别注意符号的处理.21、(1)D(1,0);(2);(3);(4)P(6,3).【解析】
(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到AD的距离.【详解】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,y=-,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=1.5x﹣6,y=3,∴1.5x﹣6=3x=6,∴P(6,3).【点睛】本题考查的是一次函数的性质,三角形面积的计算等有关知识,难度中等.22、(1)众数162,中位数161.5;(2)161cm;(3).【解析】
(1)根据统计图中的数据可以求得这组数据的中位数和众数;(2)根据加权平均数的求法可以解答本题;(3)根据题意可以设计出合理的方案,注意本题答案不唯一.【详解】解:(1)这10名女生的身高为:154、158、158、161、161、162、162、162、165、167,∴这10名女生的身高的中位数是:cm,众数是162cm,即这10名女生的身高的中位数和众数分别是161.5cm、162cm;(2)平均身高.(3)可以先将八年级身高是162cm的所有女生挑选出来,若不够,再挑选身高与162cm最接近的,直到挑选到50人为止.【点睛】本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23、36πcm2【解析】
用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.【详解】阴影部分面积=πR2-4πr2=π(R2-4r2)=π(R-2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- LY/T 3393-2024植物新品种特异性、一致性、稳定性测试指南观赏海棠
- 2025年初升高暑期数学讲义专题17 对数函数(分层训练)(含答案)
- 油田第十二中学2025年中考语文一模试卷
- 2025年九年级语文中考最后一练说明文专题(全国版)(含解析)
- 2025年北京市门头沟区中考语文二模试卷
- AutoCAD图形打印58课件
- 考研复习-风景园林基础考研试题附参考答案详解【达标题】
- 考研复习-风景园林基础考研试题(能力提升)附答案详解
- 风景园林基础考研资料试题及参考答案详解(综合题)
- 2025-2026年高校教师资格证之《高等教育法规》通关题库附答案详解(突破训练)
- 武昌实验中学2025届高三下第一次测试数学试题含解析
- 小学航空科普类课程设计
- 【MOOC】仪器分析-北京化工大学 中国大学慕课MOOC答案
- 高等数学基础-002-国开机考复习资料
- 公安调解和解协议书范本
- 国家安全教育第四章-坚持以人民安全为宗旨
- TFT-LCD显示原理介绍
- 2024年陕西省中考物理试题(A卷)含答案
- 两人之间协议书(2篇)
- 近五年云南省中考数学真题及答案
- 绿色施工管理办法
评论
0/150
提交评论