![2023年广东省深圳市福田区十校联考八年级数学第二学期期末质量跟踪监视模拟试题含解析_第1页](http://file4.renrendoc.com/view/94d3f9177980575cbc433e960d5d465d/94d3f9177980575cbc433e960d5d465d1.gif)
![2023年广东省深圳市福田区十校联考八年级数学第二学期期末质量跟踪监视模拟试题含解析_第2页](http://file4.renrendoc.com/view/94d3f9177980575cbc433e960d5d465d/94d3f9177980575cbc433e960d5d465d2.gif)
![2023年广东省深圳市福田区十校联考八年级数学第二学期期末质量跟踪监视模拟试题含解析_第3页](http://file4.renrendoc.com/view/94d3f9177980575cbc433e960d5d465d/94d3f9177980575cbc433e960d5d465d3.gif)
![2023年广东省深圳市福田区十校联考八年级数学第二学期期末质量跟踪监视模拟试题含解析_第4页](http://file4.renrendoc.com/view/94d3f9177980575cbc433e960d5d465d/94d3f9177980575cbc433e960d5d465d4.gif)
![2023年广东省深圳市福田区十校联考八年级数学第二学期期末质量跟踪监视模拟试题含解析_第5页](http://file4.renrendoc.com/view/94d3f9177980575cbc433e960d5d465d/94d3f9177980575cbc433e960d5d465d5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,第一个图形中有4个“”,第二个图形中有7个“”,第三个图形中有11个“”,按照此规律下去,第8个图形中“”的个数为().A.37 B.46 C.56 D.672.若关于x的一元一次不等式组有解,则m的取值范围为A. B. C. D.3.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.3,4,5 D.1,,4.如图,点E,F是▱ABCD对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB=∠CFD中,添加一个条件,使四边形DEBF是平行四边形,可添加的条件是()A.①②③ B.①②④ C.①③④ D.②③④5.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定6.如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有()A.1个 B.2个 C.3个 D.4个7.观察下列图形,既是轴对称图形又是中心对称图形的有A.1个 B.2个 C.3个 D.4个8.下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.若分式的值为0,则x的值为A.﹣1 B.0 C.2 D.﹣1或210.下列图形中的曲线不表示y是x的函数的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.12.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.13.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为_____.14.直线与轴的交点坐标___________15.若,则=______.16.二次根式在实数范围内有意义,则的取值范围为_______.17.如图,菱形的两个顶点坐标为,,若将菱形绕点以每秒的速度逆时针旋转,则第秒时,菱形两对角线交点的坐标为__________.18.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.三、解答题(共66分)19.(10分)如图,在梯形ABCD中,AD∥BC,点E在边BC上,DE∥AB,设.(1)用向量表示下列向量:;(2)求作:(保留作图痕迹,写出结果,不要求写作法)20.(6分)如图1、如图2均是边长为1的正方形网格,请按要求用实线画出顶点在格点上的图形。(1)在图1上,画出一个面积最大的矩形ABCD,并求出它的面积;(2)在图2上,画出一个菱形ABCD,并求出它的面积。21.(6分)某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.(1)第20天的总用水量为多少米3?(2)当x≥20时,求y与x之间的函数关系式;(3)种植时间为多少天时,总用水量达到7000米3?22.(8分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的m的值为,图①中“38号”所在的扇形的圆心角度数为;(2)本次调查获取的样本数据的众数是,中位数是;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?23.(8分)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.24.(8分)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:,,;以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:.25.(10分)如图,在四边形ABCD中,AB∥DC,边AD与BC不平行(1)若∠A=∠B,求证:AD=BC.(2)已知AD=BC,∠A=70°,求∠B的度数.26.(10分)如图,△ABC的三个顶点在正方形网格的格点上,网格中的每个小正方形的边长均为单位1.(1)求证:△ABC为直角三角形;(2)求点B到AC的距离.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
设第n个图形有an个“•”(n为正整数),观察图形,根据给定图形中“•”个数的变化可找出变化规律“an=+1(n为正整数)”,再代入n=8即可得出结论.【详解】设第n个图形有an个“•”(n为正整数).
观察图形,可知:a1=1+2+1=4,a2=1+2+3+1=7,a3=1+2+3+4+1=11,a4=1+2+3+4+5+1=16,…,
∴an=1+2+…+n+(n+1)+1=+1(n为正整数),
∴a8=+1=1.
故选:B.【点睛】考查了规律型:图形的变化类,根据各图形中“•”个数的变化找出变化规律“an=+1(n为正整数)”是解题的关键.2、C【解析】
求出两个不等式的解集,再根据有解列出不等式组求解即可:【详解】解,∵不等式组有解,∴2m>2﹣m.∴.故选C.3、C【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.4+5≠6,不能构成直角三角形,故不符合题意;B.2+3≠4,不能构成直角三角形,故不符合题意;C.3+4=5,能构成直角三角形,故符合题意;D.1+()≠(),不能构成直角三角形,故不符合题意。故选C.【点睛】此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算4、D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.5、B【解析】
从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴AC===4(cm),∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.6、D【解析】试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(4)S1=,S2=,S1=,∵,∴S1+S2=S1.综上,可得:面积关系满足S1+S2=S1图形有4个.故选D.考点:勾股定理.7、C【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,∵第一个图形不是轴对称图形,是中心对称图形;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;∴既是轴对称图形又是中心对称图形共有3个.故选C.8、D【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9、C【解析】
根据分式值为零的条件可得x﹣2=0,再解方程即可.【详解】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选C.10、C【解析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.【详解】根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.故选C【点睛】考点:函数的定义二、填空题(每小题3分,共24分)11、【解析】
设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为y=.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.12、3【解析】
根据直角三角形斜边的中线等于斜边的一半求解即可.【详解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,∴,,∴DO=AO=3.故答案为3.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.13、4.8cm.【解析】
根据菱形的性质可得AB=5cm,根据菱形的面积公式可得S菱形ABCD=AC•BD=AB•DH,即DH==4.8cm.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点睛】本题考查了菱形的边长问题,掌握菱形的性质、菱形的面积公式是解题的关键.14、(0,-3)【解析】
求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.【详解】解:由题意得:当x=0时,y=2×0-3=-3,即直线与y轴交点坐标为(0,-3),故答案为(0,-3).【点睛】本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.15、1【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案【详解】∵∴∴∴故答案为1.【点睛】本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.16、【解析】
二次根式有意义:被开方数大于等于0;分母不等于0;列出不等式,求解即可.【详解】根据题意,解得故答案为【点睛】本题考查了二次根式有意义的条件,还要保证分母不等于零;熟练掌握二次根式有意义的条件是解答本题的关键.17、(-,0)【解析】
先计算得到点D的坐标,根据旋转的性质依次求出点D旋转后的点坐标,得到变化的规律即可得到答案.【详解】∵菱形的两个顶点坐标为,,∴对角线的交点D的坐标是(2,2),∴,将菱形绕点以每秒的速度逆时针旋转,旋转1次后坐标是(0,),旋转2次后坐标是(-2,2),旋转3次后坐标是(-,0),旋转4次后坐标是(-2,-2),旋转5次后坐标是(0,-),旋转6次后坐标是(2,-2),旋转7次后坐标是(,0),旋转8次后坐标是(2,2)旋转9次后坐标是(0,,由此得到点D旋转后的坐标是8次一个循环,∵,∴第秒时,菱形两对角线交点的坐标为(-,0)故答案为:(-,0).【点睛】此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D的坐标依次求出旋转后的坐标得到变化规律是解题的关键.18、21.2【解析】
过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.【详解】解:过点D作DN⊥AB,垂足为N.交EF于M点,∴四边形CDME、ACDN是矩形,∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,∴MF=EF-ME=1.6-1.2=0.4m,依题意知EF∥AB,∴△DFM∽△DBN,DMDN=即:0.630=0.4∴AB=BN+AN=20+1.2=21.2,答:楼高为AB为21.2米.【点睛】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.三、解答题(共66分)19、(1),(2)见解析.【解析】
(1)AD∥BC,DE∥AB,可证得四边形ABED是平行四边形,然后利用平行四边形法则与三角形法则求解即可求得答案;(2)首先作,连接AF,则即为所求.【详解】(1)∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴∴∴∴;(2)首先作,连接AF,则即为所求.【点睛】此题考查平面向量,解题关键在于灵活运用向量的转化即可.20、(1)10;(2)4【解析】
(1)根据要求画出矩形再求出面积即可;(2)根据要求画出菱形再求出面积即可.【详解】(1)如图1,四边形ABCD是面积最大的矩形由勾股定理得,AB=,BC=2,矩形ABCD的面积=10(2)如图2,四边形ABCD是菱形由图可得,BD=2,AC=4,菱形ABCD的面积=4【点睛】本题考查了作图-应用与设计,矩形的判定和性质,菱形的判定和性质,解题的关键是灵活运用所学知识解决问题.21、(1)1000;(2)y=300x﹣5000;(3)40【解析】
根据题意得出第20天的总用水量;y与x的函数关系式为分段函数,则需要分两段分别求出函数解析式;将y=7000代入函数解析式求出x的值.【详解】(1)第20天的总用水量为1000米3当0<x<20时,设y=mx∵函数图象经过点(20,1000),(30,4000)∴m=50y与x之间的函数关系式为:y=50x当x≥20时,设y=kx+b∵函数图象经过点(20,1000),(30,4000)∴1000=20k+b4000=30k+b解得k=300b=-5000∴y与x(3)当y=7000时,有7000=300x﹣5000,解得x=40考点:一次函数的性质22、(1)40,15,1°;(2)35,1;(3)50双.【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;用“38号”的百分比乘以10°,即可得圆心角的度数;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(3)根据题意列出算式,计算即可得到结果.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100-30-25-20-10=15;10°×10%=1°;故答案为:40,15,1°.(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为1,∴中位数为(1+1)÷2=1;故答案为:35,1.(3)∵在40名学生中,鞋号为1的学生人数比例为25%,∴由样本数据,估计学校各年级中学生鞋号为1的人数比例约为25%,则计划购买200双运动鞋,1号的双数为:200×25%=50(双).【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23、(1)证明见解析;(2)1.【解析】
(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,(2)由四边形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=1,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.【详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==1,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=1.【点睛】本题主要考查菱形的判定定理及性质定理,题目中的“双
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某某合作社农产品市场信息共享及数据分析合同2025年
- 2024年12月泉州惠安县人才服务工作人员公开招聘1人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025外墙涂料喷涂机器人施工工艺
- 神经病学绪论课件
- Unit 1 Lesson 2 What's your name,please 【知识精研】闽教版(2024)英语三年级上册3
- (高清版)DB37∕T 2997-2017 干旱山地造林雨水蓄存利用工程建设技术规程
- 4.2 我国的社会保障 【知识精研】高中政治统编版必修二经济与社会
- 《小学生缩句方法》课件
- 2025至2031年中国大安装板总行业投资前景及策略咨询研究报告
- 2025至2031年中国医用乳胶检查手套行业投资前景及策略咨询研究报告
- 城市绿化与生态环境改善
- 2024-2025学年中小学校第二学期师德师风工作计划:必看!新学期师德师风建设秘籍大公开(附2月-7月工作安排表)
- 《急性心力衰竭的急救处理》课件
- 小学六年级数学上册《简便计算》练习题(310题-附答案)
- 青海省西宁市海湖中学2025届中考生物仿真试卷含解析
- 2024年中国养老产业商学研究报告-银发经济专题
- 高教版2023年中职教科书《语文》(基础模块)下册教案全册
- 人教版英语七年级上册阅读理解专项训练16篇(含答案)
- word上机操作题
- 房地产公司管理制度
- 《太空一日》导学案(教师用)(共5页)
评论
0/150
提交评论