




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.不等式组的解集在数轴上表示为()A. B.C. D.2.期末考试后,办公室里有两位数学老师正在讨论他们班的数学考试成绩,林老师:“我班的学生考得还不错,有一半的学生考79分以上,一半的学生考不到79分.”王老师:“我班大部分的学生都考在80分到85分之间喔.”依照上面两位老师所叙述的话你认为林、王老师所说的话分别针对()A.平均数、众数 B.平均数、极差C.中位数、方差 D.中位数、众数3.直线与轴的交点坐标是()A. B. C. D.4.解分式方程时,去分母变形正确的是()A. B.C. D.5.若a>b成立,则下列不等式成立的是()A.-a>-b B.-a+1>-b+1C.-a-1>-6.关于的方程有两个不相等的实根、,且有,则的值是()A.1 B.-1 C.1或-1 D.27.如图,在三角形ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到A.4cm B.3cm C.2cm D.1cm8.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3 C.5 D.69.已知是关于的方程的两个实数根,且满足,则的值为()A.3 B.3或 C.2 D.0或210.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④11.如图,在平面直角坐标系中,矩形ABCD的边平行于坐标轴,对角线BD经过坐标原点,点A在函数y=kxx<0的图象上,若点C的坐标是3,-2,则k的值为A.-8 B.-6 C.-2 D.412.下列各式从左到右是分解因式的是()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.8m3n=2m3•4nD.t2﹣16+3t=(t+4)(t﹣4)+3t二、填空题(每题4分,共24分)13.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.14.关于x的方程有解,则k的范围是______.15.二次函数y=ax2+bx+c的函数值y自变量x之间的部分对应值如表:此函数图象的对称轴为_____.x……-1014……y……4-1-4-1……16.如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.17.如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为_____________18.你喜欢足球吗?下面是对耒阳市某校八年级学生的调查结果:男同学女同学喜欢的7536不喜欢的1524则男同学中喜欢足球的人数占全体同学的百分比是________.三、解答题(共78分)19.(8分)解方程:x2﹣6x+8=1.20.(8分)如图,已知∠AOB,OA=OB,点E在边OB上,四边形AEBF是平行四边形.(1)请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不写作法)(2)请说明你的画法的正确性.21.(8分)如图,在正方形网格中,每个小正方形的边长为1,ABC为格点三角形(即A,B,C均为格点),求BC上的高.22.(10分)在▱ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F.(1)如图①,证明:BE=BF.(2)如图②,若∠ADC=90°,O为AC的中点,G为EF的中点,试探究OG与AC的位置关系,并说明理由.(3)如图③,若∠ADC=60°,过点E作DC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EK=BF,连接CK,H为CK的中点,试探究线段OH与HA之间的数量关系,并对结论给予证明.23.(10分)己知一次函数的图象过点,与y轴交于点B.求点B的坐标和k的值.24.(10分)如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.25.(12分)因式分解:26.如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
参考答案一、选择题(每题4分,共48分)1、C【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x-1>0,得:x>1,
解不等式4x≤8,得:x≤2,
则不等式组的解集为1<x≤2,
故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、D【解析】试题分析:∵有一半的学生考79分以上,一半的学生考不到79分,∴79分是这组数据的中位数,∵大部分的学生都考在80分到85分之间,∴众数在此范围内.故选D.考点:统计量的选择.3、A【解析】
根据直线与x轴的交点,y=0时,求得的x的值,就是直线与x轴相交的横坐标,计算求解即可.【详解】解:当y=0时,可得计算所以直线与x轴的交点为:故选A.【点睛】本题主要考查直线与坐标轴的相交问题,这是一次函数的常考点,与x轴相交,y=0,与y轴相交,则x=0.4、D【解析】
先对分式方程乘以,即可得到答案.【详解】去分母得:,故选:D.【点睛】本题考查去分母,解题的关键是掌握通分.5、D【解析】
根据不等式的性质解答即可.【详解】A.∵a>b,∴-a<-b,故不正确;B.∵a>b,∴-a<-b,∴-a+1<-b+1,故不正确;C.∵a>b,∴a-1>b-1D.∵a>b,∴a-1>b-1,正确;故选D.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变6、B【解析】
根据根的判别式及一元二次方程的定义求得a的取值范围,再根据一元二次方程根与系数的关系求得的值,再利用列出以a为未知数的方程,解方程求得a值,由此即可解答.【详解】∵关于的方程有两个不相等的实根、,∴△=(3a+1)2-8a(a+1)=(a-1)2>0,,a≠0,∴a≠1且a≠0,∵,∴,解得a=±1,∴a=-1.故选B.【点睛】本题主要考查了根与系数的关系、根的判别式,利用根的判别式确定a的取值及利用根与系数的关系列出方程求得a的值是解决问题的关键.7、C【解析】
如图,在△ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=1CD,BC=9cm,则点D到AB的距离.【详解】如图,过点D作DE⊥AB于E,
∵BD:DC=1:1,BC=6,
∴DC=11+2×6=1,
∵AD平分∠BAC,∠C=90∘,
∴DE=DC=1.
故选:C.【点睛】本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.8、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.9、A【解析】
根据根与系数的关系得出m+n=-(2b+3),mn=b2,变形后代入,求出b值,再根据根的判别式判断即可.【详解】解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,
∴m+n=-(2b+3),mn=b2,
∵+1=-,
∴+=-1,
∴=-1,
∴=-1,
解得:b=3或-1,
当b=3时,方程为x2+9x+9=0,此方程有解;
当b=-1时,方程为x2+x+1=0,△=12-4×1×1=-3<0,此时方程无解,
所以b=3,
故选:A.【点睛】本题考查一元二次方程的解,根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键.10、D【解析】
有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【详解】如图点E,F,G,H分别是四边形各边的中点,且四边形EFGH是矩形.
∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是矩形.
∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.
∴AC⊥BD.
①平行四边形的对角线不一定互相垂直,故①错误;
②菱形的对角线互相垂直,故②正确;
③矩形的对角线不一定互相垂直,故③错误;④对角线互相垂直的四边形,故④正确.
综上所述,正确的结论是:②④.
故选D.【点睛】此题主要考查矩形的性质及三角形中位线定理的综合运用.11、B【解析】
先利用矩形的性质得到矩形AEOM的面积等于矩形OFCN的面积,则根据反比例函数图象上点的坐标特征得到k的值.【详解】解:连接BD,设A(x,y),如图,∵矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,∴矩形AEOM的面积等于矩形ONCF的面积,∴xy=k=3×(−2),即k=−6,故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=12、B【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、是乘法交换律,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选B.【点睛】本题考查了因式分解的意义,利用因式分解的意义是解题关键.二、填空题(每题4分,共24分)13、【解析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案为:.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.14、k≤5【解析】
根据关于x的方程有解,当时是一次方程,方程必有解,时是二元一次函数,则可知△≥0,列出关于k的不等式,求得k的取值范围即可.【详解】解:∵方程有解①当时是一次方程,方程必有解,此时②当时是二元一次函数,此时方程有解∴△=16-4(k-1)≥0
解得:k≤5.综上所述k的范围是k≤5.故答案为:k≤5.【点睛】本题考查了一元二次方程根的判别式的应用.
总结:一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.15、直线x=1【解析】
根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.【详解】解:∵x=0、x=4时的函数值都是−1,∴此函数图象的对称轴为直线x==1,即直线x=1.故答案为:直线x=1.【点睛】本题考查了二次函数的性质,主要利用了二次函数图象的对称性.16、1【解析】
根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.【详解】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3,∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=1.故答案为:1.【点睛】本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.17、3【解析】∵AB=AC,AD平分∠BAC,∴D是BC中点.∵E是AB的中点,∴DE是△ABC的中位线,.18、50【解析】
先计算调查的男同学喜欢与不喜欢的全体人数,再用男同学中喜欢的人数比上全体人数乘以100%即可得出答案.【详解】调查的全体人数为75+15+36+24=150人,所以男同学中喜欢足球的人数占全体同学的百分比=故答案为50.【点睛】本题考查的是简单的统计,能够计算出调查的全体人数是解题的关键.三、解答题(共78分)19、x1=2x2=2.【解析】
应用因式分解法解答即可.【详解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【点睛】本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.20、(1)射线OP即为所求,见解析;(2)见解析.【解析】
(1)连接AB、EF交于点P,作射线OP即可;(2)用SSS证明△APO≌△BPO即可.【详解】解:(1)射线OP即为所求,(2)连结AB、EF交于点P,作射线OP,因为四边形AEBF是平行四边形所以,AP=BP,又AO=BO,OP=OP,所以,△APO≌△BPO,所以,∠AOP=∠BOP.【点睛】本题考查了平行四边形的性质和全等三角形的判定和性质以及据题作图的能力,解题的关键是掌握平行四边形对角线互相平分的性质.需要说明的是本题第(2)小题,也可由AO=BO和AP=BP,根据等腰三角形三线合一的性质得到∠AOP=∠BOP.21、.【解析】
根据网格,由勾股定理求,,的值,即可得到为直角三角形,利用“面积法”求斜边上的高.【详解】中,,,,,为直角三角形,设边上的高为,则有,.【点睛】本题考查了勾股定理的逆定理的运用,充分利用网格,构造直角三角形是解题的关键.22、(1)详见解析;(2)GO⊥AC;(3)AH=OH【解析】
(1)根据平行线的性质得出∠E=∠ADF,∠EFB=∠EDC,再利用ED平分∠ADC,即可解答(2)连接BG,AG,根据题意得出四边形ABCD是矩形,再利用矩形的性质,证明△ABG≌△CEG,即可解答(3)连接AK,BK,FK,先得出四边形BFKE是菱形,,再利用菱形的性质证明△KBE,△KBF都是等边三角形,再利用等边三角形的性质得出△ABK≌△CEK,最后利用三角函数即可解答【详解】(1)证明:如图①中,因为四边形ABCD为平行四边形,所以,AD∥EC,AB∥CD,所以,∠E=∠ADF,∠EFB=∠EDC,因为ED平分∠ADC,所以,∠ADF=∠EDC,所以,∠E=∠EFB,所以,BE=BF(2)解:如图⊙中,结论:GO⊥AC连接BG,AG∵四边形ABCD是平行四边形,∠ADC=90°,四边形ABCD是矩形,∠ABC=∠ABE=90°,由(1)可知:BE=BF,∵∠EBF=90°,EG=FG,∴∠E=45°,∠GBF=∠GBE=45°,BG=GE=GF,∵∠DCE=90°∴∠E=∠EDC=45°,∴DC=CE=BA,∵∠ABG=∠E=45°,AB=EC,BG=EG,∴△ABG≌△CEG(SAS),∵GA=GC∴AO=OC.∴GO⊥AC(3)解:如图⊙中,连接AK,BK,FK∵BF=EK,BF∥EK,∴四边形BFKE是平行四边形,∵BF=BE,∴四边形BFKE是菱形,∵边形ABCD是平行四边形,∴∠ADC=∠ABC=60°,∠DCB=∠DAB=120°∴∠EBF=120°,∴∠KBE=∠KBF=60°BF=BE=FK=EK,∴△KBE,△KBF都是等边三角形,∴∠ABK=∠CEK=60°,∠FEB=∠FEK=30∴∠CDE=∠CED=30°∴CD=CE=BA,∵BK=EK,∴△ABK≌△CEK(SAS)∴AK=CK,∠AKB=∠CKB∴∠AKC=∠BKE=60°∴△ACK是等边三角形∵OA=OC,CH=HK∴AK=2OH,AH⊥CK,∴AH=AK·cos30°=AK∴AH=OH.【点睛】此题考查平行四边形的性质,矩形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,解题关键在于作辅助线23、点B的坐标为,【解析】
根据一次函数的性质,与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁石油化工大学《短片拍摄》2023-2024学年第二学期期末试卷
- 酒泉职业技术学院《成本会计学》2023-2024学年第二学期期末试卷
- 稷山教学课件
- 生鲜促销活动方案(3篇)
- 防汛物资装卸方案(3篇)
- 租赁投标响应方案(3篇)
- 路标围栏安装方案(3篇)
- 平安监控方案(3篇)
- 工程开荒保洁方案(3篇)
- 理财方案设计(3篇)
- 单机试车检查、联动试车确认表
- 一例肾破裂伴胸腔积液患者疑难病例讨论
- JJG 621-2012 液压千斤顶行业标准
- JTG∕T F30-2014 公路水泥混凝土路面施工技术细则
- 护理站站长述职报告
- 小学科学湘科版四年级下册全册同步练习含答案
- 体检护理质量改善项目汇报
- 大唐陕西发电限公司本部及所属单位一般管理人员招聘历年高频难易度、易错点模拟试题(共500题)附带答案详解
- 国开《资源与运营管理-0030》期末机考【答案】
- 2023年攀枝花市米易县社区工作者招聘考试真题
- 敬老院工作经验交流发言稿
评论
0/150
提交评论