2023年安徽省亳州市涡阳县王元中学数学八下期末达标检测试题含解析_第1页
2023年安徽省亳州市涡阳县王元中学数学八下期末达标检测试题含解析_第2页
2023年安徽省亳州市涡阳县王元中学数学八下期末达标检测试题含解析_第3页
2023年安徽省亳州市涡阳县王元中学数学八下期末达标检测试题含解析_第4页
2023年安徽省亳州市涡阳县王元中学数学八下期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论中,正确的是()A.①② B.②③ C.①③ D.①②③2.如图是一次函数(、是常数)的图象,则不等式的解集是()A. B.C. D.3.如图,已知四边形是平行四边形,、分别为和边上的一点,增加以下条件不能得出四边形为平行四边形的是()A. B. C. D.4.用反证法证明命题“在中,若,则”时,可以先假设()A. B. C. D.5.方程x(x-2)=0的根是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=-26.如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为()A.3 B.2.5 C.2 D.1.57.服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是()A.平均数 B.中位数 C.方差 D.众数8.已知a,b,c是△ABC的三边长,且满足关系,则△ABC的形状为()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形9.如图,直线和直线相交于点,则不等式的解集为()A. B. C. D.10.如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为()A. B. C. D.11.无论a取何值,关于x的函数y=﹣x+a2+1的图象都不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0二、填空题(每题4分,共24分)13.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为14.把抛物线沿轴向上平移1个单位,得到的抛物线解析式为______.15.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=6cm,GH=8cm,则边AB的长是__________16.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).17.若点在轴上,则点的坐标为__________.18.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三、解答题(共78分)19.(8分)先化简,再求值:÷(x﹣),其中x=+1.20.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.21.(8分)某校为奖励学习之星,准备在某商店购买A、B两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.(1)求一件A种文具的价格;(2)根据需要,该校准备在该商店购买A、B两种文具共150件.①求购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式;②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?22.(10分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图所示:(1)根据图像,直接写出y1、y2关于x的函数关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.23.(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)中,,将沿翻折至,连结.结论1:与重叠部分的图形是等腰三角形;结论2:.试证明以上结论.(应用与探究)在中,已知,,将沿翻折至,连结.若以、、、为顶点的四边形是正方形,求的长.(要求画出图形)24.(10分)某文化用品店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。求第一批书包的单价。25.(12分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下所示的统计表和如图所示的统计图.组别身高(cm)Ax<150B150≤x<155C155≤x<160D160≤x<165Ex≥165根据图表中提供的信息,回答下列问题:(1)女生身高在B组的有________人;(2)在样本中,身高在150≤x<155之间的共有________人,身高人数最多的在________组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生有多少人.26.如图,在平行四边形OABC中,已知点A、C两点的坐标为A(,),C(2,0).(1)求点B的坐标.(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.(3)求平行四边形OABC的面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大.故①②③正确,故选D.点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、B【解析】

根据一次函数图像与不等式的性质即可求解.【详解】∵一次函数与x轴的交点横坐标为-2,∴不等式的解集为故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数与不等式的关系.3、B【解析】

逐项根据平行四边形的判定进行证明即可解题.【详解】解:∵四边形是平行四边形,∴AB∥CD,AD∥BC,∠A=∠C,∠ABC=∠ADC,AB=CD,AD=BC,A.若,易证ED=BF,∵ED∥BF,∴四边形为平行四边形,B.若,由于条件不足,无法证明四边形为平行四边形,C.若,∴,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,D.若,易证△ABE≌△CDF,∴AE=CF,接下来的证明步骤同选项A,故选B【点睛】本题考查了平行四边形的判定与性质,可以针对各种平行四边形的判定方法,给出条件,本题可通过构造条件证△AEB≌△CFD来解题.4、B【解析】

根据反证法的第一步是假设结论不成立进而解答即可.【详解】解:用反证法证明命题“△ABC中,若∠A>∠B+∠C,则∠A>90°”时,应先假设∠A≤90°.故选:B.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.5、C【解析】试题分析:∵x(x-1)=0∴x=0或x-1=0,解得:x1=0,x1=1.故选C.考点:解一元二次方程-因式分解法.6、C【解析】

由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE-AB,求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE-AB=5-3=2.故选C.【点睛】此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.7、D【解析】

根据题意,应该关注哪种尺码销量最多.【详解】由于众数是数据中出现次数最多的数,故应该关注这组数据中的众数.故选D【点睛】本题考查了数据的选择,根据题意分析,即可完成。属于基础题.8、C【解析】试题解析:∵+|a−b|=0,∴c2-a2-b2=0,a-b=0,解得:a2+b2=c2,a=b,∴△ABC的形状为等腰直角三角形;故选C.【点睛】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9、C【解析】

写出直线y=kx(k≠0)在直线y=mx+n(m≠0)上方部分的x的取值范围即可.【详解】解:由图可知,不等式kx≥mx+n的解集为x≥2;故选:C.【点睛】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.10、C【解析】

首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠3,根据角平分线的定义推知∠1=∠3,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.【详解】如图,∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠3,又∵AF平分∠CAB,∴∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=1.故选C.【点睛】本题考查了三角形中位线定理,等腰三角形的判定与性质.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.11、C【解析】

根据题目中的函数解析式和一次函数的性质可以解答本题.【详解】解:∵y=﹣x+a2+1,k=﹣1<0,a2+1≥1>0,∴函数y=﹣x+a2+1经过第一、二、四象限,不经过第三象限,故选:C.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.12、D【解析】

表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.二、填空题(每题4分,共24分)13、1或32【解析】

当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.

②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,

在Rt△ABC中,AB=1,BC=4,

∴AC=42+32=5,

∵∠B沿AE折叠,使点B落在点B′处,

∴∠AB′E=∠B=90°,

当△CEB′为直角三角形时,只能得到∠EB′C=90°,

∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

设BE=x,则EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得x=32,

∴BE=32;

②当点B′落在AD边上时,如答图2所示.

此时ABEB′为正方形,∴BE=AB=1.

综上所述,BE的长为32或14、【解析】

抛物线图像向上平移一个单位,即纵坐标减1,然后整理即可完成解答.【详解】解:由题意得:,即【点睛】本题主要考查了函数图像的平移规律,即“左右横,上下纵,正减负加”的理解和应用是解题的关键.15、.【解析】

利用三个角是直角的四边形是矩形易证四边形EFGH为矩形,那么由折叠可得GE的长,进而求出HM,AB即为边2HM的长.【详解】解:∵∠HEM=∠HEB,∠GEF=∠CEF,∴∠HEF=∠HEM+∠GEF=∠BEG+∠GEC=×180°=90°,同理可得:∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形,∵EH=6cm,GH=8cm,∴GE=10由折叠可知,HM⊥GE,AH=HM,BH=HM,∵,∴AB=AH+BH=2HM=2×=.故答案为.【点睛】此题主要考查了翻折变换的性质以及勾股定理等知识,得出四边形EFGH为矩形是解题关键.16、乙.【解析】

根据方差反应了数据的波动情况,即可完成作答。【详解】解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。【点睛】本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。17、【解析】

根据x轴上点的纵坐标等于1,可得m值,根据有理数的加法,可得点P的坐标.【详解】解:因为点P(m+1,m-2)在x轴上,

所以m-2=1,解得m=2,

当m=2时,点P的坐标为(3,1),

故答案为(3,1).【点睛】本题主要考查了点的坐标.坐标轴上点的坐标的特点:x轴上点的纵坐标为1,y轴上的横坐标为1.18、n2+2n【解析】试题分析:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.解:第n个图形需要黑色棋子的个数是n2+2n.故答案为:n2+2n.三、解答题(共78分)19、.【解析】

先算括号里面的,再算除法,把分式化为最简公式,把x的值代入进行计算即可【详解】原式===,当x=+1时,原式=.【点睛】此题考查分式的化简求值,掌握运算法则是解题关键20、(1)详见解析;(1)10+1.【解析】

(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;(1)四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.【详解】(1)∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形;(1)∵四边形ACED是平行四边形.∴DE=AC=1.在Rt△CDE中,由勾股定理得CD=,∵D是BC的中点,∴BC=1CD=4,在△ABC中,∠ACB=90°,由勾股定理得AB=,∵D是BC的中点,DE⊥BC,∴EB=EC=4,∴四边形ACEB的周长=AC+CE+EB+BA=10+1.【点睛】本题考查了平行四边形的判定与性质,垂直平分线的性质定理,勾股定理,注意寻找求AB和EB的长的方法和途径是解题的关键.21、(1)一件A种文具的价格为15元;(2)①W=-5a+3000;②有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.【解析】

(1)根据题意可以得到相应的分式方程,从而可以求得一件A种文具的价格;(2)①根据题意,可以直接写出W与a之间的函数关系式;②根据题意可以求得a的取值范围,再根据W与a的函数关系式,可以得到W的最小值,本题得以解决.【详解】(1)设一件A种文具的价格为x元,则一件B种玩具的价格为(x+5)元,解得,x=15,经检验,x=15是原分式方程的解,答:一件A种文具的价格为15元;(2)①由题意可得,W=15a+(15+5)(150-a)=-5a+3000,即购买A、B两种文具所需经费W与购买A种文具的件数a之间的函数关系式是W=-5a+3000;②∵购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,∴,解得,50≤a≤100,∵a为整数,∴共有51种购买方案,∵W=-5a+3000,∴当a=100时,W取得最小值,此时W=2500,150-a=100,答:有51种购买方案,经费最少的方案购买A种玩具100件,B种玩具50件,最低费用为2500元.【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质、不等式的性质和分式方程的知识解答,注意分式方程要检验.22、(1)(0≤x≤10);(0≤x≤6)(2)(3)A加油站到甲地距离为150km或300km【解析】

(1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;(2)分别根据当0≤x<时,当≤x<6时,当6≤x≤10时,求出即可;(3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.【详解】(1)设y1=k1x,由图可知,函数图象经过点(10,600),∴10k1=600,解得:k1=60,∴y1=60x(0≤x≤10),设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则,解得:∴y2=-100x+600(0≤x≤6);(2)由题意,得60x=-100x+600x=,当0≤x<时,S=y2-y1=-160x+600;当≤x<6时,S=y1-y2=160x-600;当6≤x≤10时,S=60x;即;(3)由题意,得①当A加油站在甲地与B加油站之间时,(-100x+600)-60x=200,解得x=,此时,A加油站距离甲地:60×=150km,②当B加油站在甲地与A加油站之间时,60x-(-100x+600)=200,解得x=5,此时,A加油站距离甲地:60×5=300km,综上所述,A加油站到甲地距离为150km或300km.23、【发现与证明】结论1:见解析,结论1:见解析;【应用与探究】AC的长为或1.【解析】

【发现与证明】由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA=(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;【应用与探究】:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=1.【详解】【发现与证明】:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=11(180°−∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;【应用与探究】:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,∴AC=;②如图1所示:AC=BC=1;综上所述:AC的长为或1.【点睛】本题考查平行四边形的性质,正方形的性质,翻折变换(折叠问题).【发现与证明】对于结论1,要证明三角形是等腰三角形,只需要证明它的两条边相等,而在同一个三角形内要证明两条线段相等只需要证明它们所对应的角相等(即用等角对等边证明).结论1:要证明两条线段平行,本题用到了内错角相等,两直线平行.所以解决【发现与证明】的关键是根据已知条件找到对应角之间的关系.【应用与探究

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论