版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若一组数据1.2.3.x的极差是6,则x的值为().A.7 B.8 C.9 D.7或2.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A.1B.2C.3D.43.如图,平行四边形,对角线交于点,下列选项错误的是()A.互相平分B.时,平行四边形为矩形C.时,平行四边形为菱形D.时,平行四边形为正方形4.如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为()A.2 B.4 C.6 D.85.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2 B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)6.下列计算正确的是()A.3xy2C.2a27.已知x=+1,y=﹣1,则x2+xy+y2的值为()A.4 B.6 C.8 D.108.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5 B.8 C.10.5 D.149.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为A.14 B.13 C.12 D.1010.在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是()A. B.C. D.与互相平分二、填空题(每小题3分,共24分)11.已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.12.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第5幅图中有______个正方形.13.如图,矩形ABCD中,AB=2,BD=4,对角线AC,BD交于点O,AE⊥BD,则AD=______,AE=______.14.如图,把R1,R2,R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3,当R1=18.3,R2=17.6,R3=19.1,U=220时,I的值为___________.15.某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:尺码/厘米2222.52323.52424.525销售量/双12311864该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.16.如图菱形ABCD的对角线AC,BD的长分别为12cm,16cm,则这个菱形的周长为____.17.已知直角三角形中,分别以为边作三个正方形,其面积分别为,则__________(填“”,“”或“”)18.如图,在矩形中,,过矩形的对角线交点作直线分别交、于点,连接,若是等腰三角形,则____.三、解答题(共66分)19.(10分)计算:(1)(2).20.(6分)已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.21.(6分)如图,平行四边形的对角线,相交于点,是等边三角形.(1)求证:平行四边形为矩形;(2)若,求四边形的面积.22.(8分)党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).23.(8分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.24.(8分)解下列方程式:(1)x2﹣3x+1=1.(2)x2+x﹣12=1.25.(10分)计算(1)(2)分解因式(3)解方程:.26.(10分)国家规定,中小学生每天在校体育活动时间不低于.为此,某县就“你每天在校体育活动时间是多少”的问题,随机调查了辖区内300名初中学生.根据调查结果绘制成统计图如图所示,其中组为,组为,组为,组为.请根据上述信息解答下列问题:(1)本次调查数据的中位数落在______组内,众数落在______组内;(2)若该辖区约4000名初中生,请你估计其中达到国家规定体育活动时间的人数;(3)若组取,组取,组取,组取,试计算这300名学生平均每天在校体育活动的时间.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:根据极差的定义,分两种情况:x为最大值或最小值:当x为最大值时,;当x是最小值时,.∴x的值可能7或.故选D.考点:1.极差;2.分类思想的应用.2、B【解析】
根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0,∴一次函数中y随x的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x>1时,y<0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y随x的增大而减小,④不正确.故选:B【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数基本性质.3、D【解析】
根据平行四边形、矩形、菱形和正方形的性质,逐一判定即可得解.【详解】A选项,根据平行四边形对角线互相平分的性质,即可判定正确;B选项,对角线相等的平行四边形是矩形,正确;C选项,对角线互相垂直的平行四边形为菱形,正确;D选项,并不能判定其为正方形;故答案为D.【点睛】此题主要考查平行四边形、矩形、菱形和正方形的判定,熟练掌握,即可解题.4、D【解析】
根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.【详解】解:∵正方形ABCD,AD=4,∴AB=AD=4=BC,∵BC=2OB,∴OB=2,∴A(2,4),代入y=得:k=8,故选:D.【点睛】本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.5、D【解析】
利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【详解】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b),故选D.【点睛】本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.6、D【解析】
根据分式的计算法则,依次计算各选项后即可进行判断.【详解】A选项:3xyB选项:1a+bC选项:2aD选项:a2故选:D.【点睛】查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.7、D【解析】
根据,将代数式变形,再代值计算即可.【详解】解:,当,时原式,故选:D.【点睛】本题考查了与二次根式有关的化简代值计算,需要先将代数式化为较简便的形式,再代值计算.8、B【解析】
利用相似三角形的判定与性质得出,求出EC即可.【详解】∵DE∥BC,∴△ADE∽△ABC.∴,即解得:EC=1.故选B.9、C【解析】
∵平行四边形ABCD,∴AD∥BC,AD=BC,AO=CO,∴∠EAO=∠FCO,∵在△AEO和△CFO中,,∴△AEO≌△CFO,∴AE=CF,EO=FO=1.5,∵C四边形ABCD=18,∴CD+AD=9,∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.10、D【解析】
由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.【详解】解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形,故选:D.【点睛】此题考查了平行四边形的判定以及菱形的判定.此题比较简单,注意掌握对角线互相垂直的平行四边形是菱形定理的应用.二、填空题(每小题3分,共24分)11、-1.【解析】
先利用提公因式法因式分解,然后利用整体代入法求值即可.【详解】解:∵ab2+a2b=ab(a+b),而a+b=5,ab=-6,∴ab2+a2b=-6×5=-1.故答案为:-1.【点睛】此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.12、55【解析】
观察图形,找到正方形的个数与序数之间的关系,从而得出第5幅图中正方形的个数.【详解】解:∵第1幅图中有1个正方形,
第2幅图中有1+4=5个正方形,
第3幅图中有1+4+9=14个正方形,∴第4幅图中有12+22+32+42=30个正方形,第5幅图中有12+22+32+42+52=55个正方形.故答案为:55.【点睛】本题考查查图形的变化规律,能根据图形之间的变化规律,得出正方形个数与序数之间的规律是解决此题的关键.13、23,3【解析】
根据矩形的性质求出∠BAD=90°,根据勾股定理求出AD,根据含30°角的直角三角形的性质求出AE=12AD,即可求出AE【详解】解:∵四边形ABCDD是矩形,∴∠BAD=90°,在Rt△BAD中,由勾股定理得:AD=∵在Rt△BAD中,AB=2,BD=4,∴AB=12BD∴∠ADB=30°,∵AE⊥BD,∴∠AED=90°,∴AE=12AD=12×2故答案为:23【点睛】本题考查了勾股定理,矩形的性质和含30°角的直角三角形的性质,能灵活运用性质进行推理是解此题的关键.14、1【解析】
直接把已知数据代入进而求出答案.【详解】解:由题意可得:U=IR1+IR2+IR3=I(R1+R2+R3),当R1=18.3,R2=17.6,R3=19.1,U=220时,I(18.3+17.6+19.1)=220解得:I=1故答案为:1.【点睛】此题主要考查了代数式求值,正确代入相关数据是解题关键.15、众数【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为众数.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.16、40cm【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×12=6cm,OB=BD=×16=8cm,根据勾股定理得,,所以,这个菱形的周长=4×10=40cm.故答案为:40cm.【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.17、【解析】
由勾股定理得出AC2+BC2=AB2,得出S1+S2=S3,可得出结果.【详解】解:∵∠ACB=90°,
∴AC2+BC2=AB2,
∴S1+S2=S3,故答案为:=.【点睛】本题考查了勾股定理、正方形面积的计算;熟练掌握勾股定理,由勾股定理得出正方形的面积关系是解决问题的关键.18、或【解析】
连接AC,由矩形的性质得出∠B=90°,AD=BC=6,OA=OC,AD∥BC,由ASA证明△AOE≌△COF,得出AE=CF,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,设AE=AF=CF=x,则BF=6-x,在Rt△ABF中,由勾股定理得出方程,解方程即可;②当AF=EF时,作FG⊥AE于G,则AG=AE=BF,设AE=CF=x,则BF=6-x,AG=x,得出方程x=6-x,解方程即可;③当AE=FE时,作EH⊥BC于H,设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,求出FH=CF-CH=2x-6,在Rt△EFH中,由勾股定理得出方程,方程无解;即可得出答案.【详解】解:连接AC,如图1所示:∵四边形ABCD是矩形,∴∠B=90°,AD=BC=6,OA=OC,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CF=x,则BF=6-x,在Rt△ABF中,由勾股定理得:12+(6-x)2=x2,解得:x=,即AE=;②当AF=EF时,作FG⊥AE于G,如图2所示:则AG=AE=BF,设AE=CF=x,则BF=6-x,AG=x,所以x=6-x,解得:x=1;③当AE=FE时,作EH⊥BC于H,如图3所示:设AE=FE=CF=x,则BF=6-x,CH=DE=6-x,∴FH=CF-CH=x-(6-x)=2x-6,在Rt△EFH中,由勾股定理得:12+(2x-6)2=x2,整理得:3x2-21x+52=0,∵△=(-21)2-1×3×52<0,∴此方程无解;综上所述:△AEF是等腰三角形,则AE为或1;故答案为:或1.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理、解方程、等腰三角形的性质、分类讨论等知识;根据勾股定理得出方程是解决问题的关键,注意分类讨论.三、解答题(共66分)19、(1)28﹣10;(2)3a﹣(+3)b.【解析】
(1)利用完全平方公式计算;(2)先把各二次根式化简为最简二次根式,然后合并即可.【详解】(1)原式=3﹣10+25=28﹣10;(2)原式=3a+b﹣2b﹣3b=3a﹣(+3)b.【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则20、证明见解析.【解析】
可通过证明DM∥BN,DM=BN来说明四边形是平行四边形,也可通过DM=BN,BM=DN来说明四边形是平行四边形.【详解】(法一)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵DM∥BN,∴四边形MBND是平行四边形.(法二)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△AMN和△CND中,又∵,∴△AMN≌△CND,∴BM=DN.∵AM=CN,∴AD﹣AM=CB﹣CN,即DM=BN.又∵BM=DN,∴四边形MBND是平行四边形.点睛:本题考查了平行四边形的性质和判定,题目难度不大.21、(1)见解析;(2)【解析】
(1)由等边△OAB及平行四边形ABCD得到BD=AC,再根据对角线相等的平行四边形是矩形即可证明.(2)先在Rt△ABC中由∠ACB=30°计算出BC的长,然后再底边长BC乘以高AB代入数值即可求出面积.【详解】解:(1)证明:为等边三角形,∴OA=OB四边形是平行四边形∴OA=OC,OB=OD∴OA=OB=OC=OD∴BD=AC平行四边形为矩形(2)由(1)知中,,矩形的面积【点睛】本题考查矩形的判定方法,熟练掌握矩形判定方法是解决此类题的关键.22、(1)(2)【解析】
(1)根据概率公式计算即可;(2)先画树状图得出所有可能的结果,然后根据概率公式计算即可.【详解】(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是;(2)画树状图:共有12种情况,其中符合题意的有8种,∴【点睛】简单事件的概率.23、见解析.【解析】
根据三角形中位线定理得到,EF∥AC,,GH∥AC,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明结论.【详解】证明:、分别是、的中点是的中位线同理:四边形是平行四边形【点睛】本题考查的是三角形中位线定理、平行四边形的判定,掌握三角形中位线定理是解题的关键.24、(1)x=;(2)x=﹣4或x=3.【解析】
(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)∵x2﹣3x+1=1,∴x2﹣3x=﹣1,∴x2﹣3x+=,∴(x﹣)2=,∴x=;(2)∵x2+x﹣12=1,∴(x+4)(x﹣3)=1,∴x=﹣4或x=3;【点睛】本题考查了一元二次方程的解法,根据方程的特点选择合适的方法是解决问题的关键.25、①;②;③无解【解析】
(1)分别求出各不等式的解集,再根据小大大小中间找求出其公共解集即可;(1)首先利用平方差公式进行分解,再利用完全平方公式进行二次分解即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业化工厂清洁劳务协作协议(2024年度)一
- 二零二五年度电子商务O2O平台合作协议3篇
- 2025年度产业园区新能源车充电基础设施建设协议4篇
- 2025年度节能环保产业项目合作协议书4篇
- 2025版电商供应链金融合作框架协议4篇
- 2025年度企业差旅管理服务全面合作协议4篇
- 个人投资企业股份合作简明协议版A版
- 2025年度复杂地质条件边坡支护与护壁桩施工技术规范合同3篇
- 专业印刷服务订购协议集锦版B版
- 2024综合汽车维修服务协议典范版
- TB 10010-2008 铁路给水排水设计规范
- 黑色素的合成与美白产品的研究进展
- 建筑史智慧树知到期末考试答案2024年
- 金蓉颗粒-临床用药解读
- 社区健康服务与管理教案
- 2023-2024年家政服务员职业技能培训考试题库(含答案)
- 2023年(中级)电工职业技能鉴定考试题库(必刷500题)
- 藏历新年文化活动的工作方案
- 果酒酿造完整
- 第4章-理想气体的热力过程
- 生涯发展展示
评论
0/150
提交评论