2023年甘肃省临泽县数学八年级第二学期期末考试模拟试题含解析_第1页
2023年甘肃省临泽县数学八年级第二学期期末考试模拟试题含解析_第2页
2023年甘肃省临泽县数学八年级第二学期期末考试模拟试题含解析_第3页
2023年甘肃省临泽县数学八年级第二学期期末考试模拟试题含解析_第4页
2023年甘肃省临泽县数学八年级第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在▱ABCD中,AB=3,AD=5,∠BCD的平分线交BA的延长线于点E,则AE的长为()A.3 B.2.5 C.2 D.1.52.下列图形中,不是中心对称图形的是()A. B. C. D.3.下列等式一定成立的是()A.9-4=5 B.54.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量(升)与行驶时间(小时)之间的函数关系的图象是()A. B.C. D.5.在以下列线段a、b、c的长为边的三角形中,不能构成直角三角形的是()A.a=9b=41c=40 B.a=b=5c=5C.a:b:c=3:4:5 D.a=11b=12c=156.如图,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上的点处,若的面积为,那么折叠的的面积为()A.30 B.20 C. D.7.一组数据、、、、、的众数是()A. B. C. D.8.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.9.如图,在□ABCD中,AC与BD相交于点O,点E是边BC的中点,AB=4,则OE的长是()A.2 B.C.1 D.10.某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车在步行了2公里 B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时 D.小强乘公共汽车用了20分钟二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别为AB、AC、BC的中点,若CD=8,则EF=_________.12.因式分解:2x2-1813.不等式组的解集是_____.14.若,则的值为__________,的值为________.15.在函数的图象上有两个点,,则的大小关系是___________.16.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.17.如图,在平行四边形中,于点,若,则的度数为________.18.请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式_____.三、解答题(共66分)19.(10分)在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′(不写画法);(2)并直接写出点B′、C′的坐标:B′()、C′();(3)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是().20.(6分)如图1,在平面直角坐标系中,直线l:y=x+2与x轴交于点A,与y轴交于点B,点C在x轴的正半轴上,且OC=2OB.(1)点F是直线BC上一动点,点M是直线AB上一动点,点H为x轴上一动点,点N为x轴上另一动点(不与H点重合),连接OF、FH、FM、FN和MN,当OF+FH取最小值时,求△FMN周长的最小值;(2)如图2,将△AOB绕着点B逆时针旋转90°得到△A′O′B,其中点A对应点为A′,点O对应点为O',连接CO',将△BCO'沿着直线BC平移,记平移过程中△BCO'为△B'C'O″,其中点B对应点为B',点C对应点为C',点O′对应点为O″,直线C'O″与x轴交于点P,在平移过程中,是否存在点P,使得△O″PC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.21.(6分)在中,BD是它的一条对角线,过A、C两点分别作,,E、F为垂足.(1)如图,求证:;(2)如图,连接AC,设AC、BD交于点O,若.在不添加任何辅助线的情况下,请直接写出图中的所有长度是OE长度2倍的线段.22.(8分)如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F.(1)求证:(BE+BF)2=2OB2;(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于(用含a的代数式表示)23.(8分)如图,延长□ABCD的边AB到点E,使BE=AB,连结CE、BD、DE.当AD与DE有怎样的关系时,四边形BECD是矩形?(要求说明理由)24.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?25.(10分)定义:有一组对边平行,有一个内角是它对角的一半的凸四边形叫做半对角四边形,如图1,直线,点,在直线上,点,在直线上,若,则四边形是半对角四边形.(1)如图1,已知,,,若直线,之间的距离为,则AB的长是____,CD的长是______;(2)如图2,点是矩形的边上一点,,.若四边形为半对角四边形,求的长;(3)如图3,以的顶点为坐标原点,边所在直线为轴,对角线所在直线为轴,建立平面直角坐标系.点是边上一点,满足.①求证:四边形是半对角四边形;②当,时,将四边形向右平移个单位后,恰有两个顶点落在反比例函数的图象上,求的值.26.(10分)如图,已知点是反比例函数的图象上一点过点作轴于点,连结,的面积为.(1)求和的值.(2)直线与的延长线交于点,与反比例函数图象交于点.①若,求点坐标;②若点到直线的距离等于,求的值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE-AB,求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE-AB=5-3=2.故选C.【点睛】此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.2、A【解析】

根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:A.【点睛】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.3、B【解析】A.9-4=3-2=1,则原计算错误;B.5×3=15,正确;C.94、B【解析】

根据油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式,得出图象.【详解】解:由题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40-5t(0≤t≤8),

结合解析式可得出图象:

故选:B.【点睛】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.5、D【解析】

根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【详解】解:A、因为92+402=412,故能构成直角三角形;B、因为52+52=(5)2,故能构成直角三角形;C、因为32+42=52,故能构成直角三角形;D、因为112+122≠152,故不能构成直角三角形;故选:D.【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足关系时,则三角形为直角三角形.6、D【解析】

由三角形面积公式可求BF的长,由勾股定理可求AF的长,即可求CF的长,由勾股定理可求DE的长,即可求△ADE的面积.【详解】解:∵四边形ABCD是矩形

∴AB=CD=6cm,BC=AD,

∵,即:∴BF=8(cm)

在Rt△ABF中,(cm)

∵折叠后与重合,

∴AD=AF=10cm,DE=EF,

∴BC=10cm,

∴FC=BC-BF=10-8=2(cm),

在Rt△EFC中,,

∴,解之得:,∴(cm2),

故选:D.【点睛】本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.7、D【解析】

根据众数的定义进行解答即可.【详解】解:6出现了2次,出现的次数最多,则众数是6;故选:D.【点睛】此题考查了众数,众数是一组数据中出现次数最多的数.8、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9、A【解析】

根据平行四边形的性质得BO=DO,所以OE是△ABC的中位线,根据三角形中位线定理三角形的中位线平行于第三边并且等于第三边的一半.【详解】解:在▱ABCD中,AC与BD相交于点O,

∴BO=DO,

∵点E是边BC的中点,

所以OE是△ABC的中位线,

∴OE=AB=1.

故选A.【点睛】本题利用平行四边形的性质和三角形的中位线定理求解,需要熟练掌握.10、D【解析】试题分析:根据函数图象可得:小强从家到公共汽车站步行了2公里;小强在公共汽车站等小明用了10分钟;公共汽车的平均速度是30公里/小时;小强乘公共汽车用了30分钟.则D选项是错误的.考点:一次函数图形的应用.二、填空题(每小题3分,共24分)11、1【解析】

根据直角三角形的性质求出AB,根据三角形中位线定理求出EF.【详解】解:∵∠ACB=90°,点D为AB的中点,∴AB=2CD=16,∵点E、F分别为AC、BC的中点,∴EF=12AB=1故答案为:1.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12、2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考点:因式分解.13、x≤1【解析】

先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:解不等式①得:x≤1,解不等式②得:x<7,∴不等式组的解集是x≤1,故答案为:x≤1.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.14、,【解析】

令,用含k的式子分别表示出,代入求值即可.【详解】解:令,则,所以,.故答案为:(1).,(2).【点睛】本题考查了分式的比值问题,将用含同一字母的式子表示是解题的关键.15、y1>y2【解析】分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质,由k的值判断函数的增减性,由此比较即可.详解:∵k=-5<0∴y随x增大而减小,∵-2<5∴>.故答案为:>.点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.16、52【解析】解:已知AC=10cm,BD=24cm,菱形对角线互相垂直平分,∴AO=5,BO=12cm,∴AB==13cm,∴BC=CD=AD=AB=13cm,∴菱形的周长为4×13=52cm17、26°【解析】

根据可得△DBC为等腰三角形,则有∠DBC=∠C=64°,再根据平行四边形的对边互相平行,可得∠ADB=∠DBC=64°,最后再根据内角和定理来求得∠DAE的度数.【详解】解:∵,∠C=64°,∴∠DBC=∠C=64°,又∵四边形是平行四边形,∴AD∥BC,∴∠ADB=∠DBC=64°,又∵,∴∠DAE=90°−64°=26°.故答案为:26°.【点睛】本题主要考查了平行四边形和等腰三角形的性质,熟练掌握是解题的关键.18、y=﹣x+1【解析】

分析:由y随着x的增大而减小可得出k<0,取k=-1,再根据一次函数图象上点的坐标特征可得出b=1,此题得解.详解:设该一次函数的解析式为y=kx+b.∵y随着x的增大而减小,∴k<0,取k=﹣1.∵点(0,1)在一次函数图象上,∴b=1.故答案为y=﹣x+1.点睛:本题考查了一次函数的性质以及一次函数图象上点的坐标特征,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.三、解答题(共66分)19、(1)答案见解析;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)(a﹣5,b﹣2).【解析】

(1)根据网格结构找出点B、C平移后的位置,然后顺次连接即可;(2)根据平面直角坐标系写出点B′、C′的坐标即可;(3)根据平移规律写出即可.【详解】解:(1)△A′B′C′如图所示;(2)B′(﹣4,1)、C′(﹣1,﹣1);(3)∵点A(3,4)、A′(﹣2,2),∴平移规律为向左平移5个单位,向下平移2个单位,∴P(a,b)平移后的对应点P′的坐标是(a﹣5,b﹣2).故答案为B′(﹣4,1)、C′(﹣1,﹣1);(a﹣5,b﹣2).【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20、(1);(2)满足条件的点P为:(8+2,0)或(,0)或(5,0)【解析】

(1)先求出点A,点B坐标,用待定系数法求出直线BC的解析式,作点O关于直线BC的对称点O'(),过点O'作O'H⊥OC于点F,交BC于点H,此时OF+FH的值最小,求出点F坐标,作点F关于直线AB与直线OC的对称点,连接F'F''交直线AB于点M,交直线OC于点N,此时△FMN周长有最小值,由两点距离公式可求△FMN周长的最小值;(2)分O''C=PC,O''P=PC,O''P=O''C三种情况讨论,由等腰三角形的性质可求解.【详解】解:(1)∵直线y=x+2与x轴交于点A,与y轴交于点B,∴当x=0时,y=2,当y=0时,x=﹣2,∴点A(﹣2,0),点B(0,2)∴OB=2∵OC=2OB.∴OC=4∴点C(4,0)设直线BC解析式为:y=kx+2,且过点C(4,0)∴0=4k+2∴k=∴直线BC解析式为:y=x+2,如图,作点O关于直线BC的对称点O'(),过点O'作O'H⊥OC于点F,交BC于点H,此时OF+FH的值最小.∴点F的横坐标为∴点F()作点F关于直线OC的对称点F'(),作点F关于直线AB的对称点F''()连接F'F''交直线AB于点M,交直线OC于点N,此时△FMN周长有最小值,∴△FMN周长的最小值=(2)∵将△AOB绕着点B逆时针旋转90°得到△A'O’B,∴O'点坐标(2,2)设直线O'C的解析式为:y=mx+b∴∴∴直线O'C的解析式为:y=﹣x+4如图,过点O'作O'E⊥OC∴OE=2,O'E=2∴EC=O'E=2∴∠O'CE=45°∵将△BCO'沿着直线BC平移,∴O''O'∥BC,O'C∥O''C',∴设O'O''的解析式为y=x+n,且过(2,2)∴2=×2+n∴n=3∴直线O'O''的解析式为y=x+3若CO''=CP,∵O'C∥O''C',∴∠O'CE=∠O''PC=45°∵CO''=CP∴∠CO''P=∠O''PC=45°∴∠O''CP=90°∴点O''的横坐标为4,∴当x=4时,y=×4+3=1∴点O''(4,1)∴CO''=1=CP∴点P(5,0)若CO''=O''P,如图,过点O''作O''N⊥CP于N,∵O'C∥O''C',∴∠O'CE=∠O''PC=45°∵CO''=O''P∴∠O''CP=∠CPO''=45°,∴∠CO''P=90°,且CO''=O''P,O''N⊥CP∴CN=PN=O''N=CP设CP=a,∴CN=PN=O''N=CP=a∴点O''(4+a,a),且直线O'O''的解析式为y=﹣x+3∴a=﹣(4+a)+3∴a=∴CP=∴点P(,0)若CP=O''P,如图,过点O''作O''N⊥CP于N∵O'C∥O''C',∴∠O'CE=∠O''PM=45°∴∠O''PN=∠O''PM=45°,且O''N⊥CP∴∠NPO''=∠PO''N=45°∴PN=O''N∴O''P=PN=CP设PN=b,则O''N=b,CP=PO''=b∴点O''坐标(4+b+b,﹣b),且直线O'O''的解析式为y=x+3∴﹣b=×(4+b+b)+3∴b=2+2∴CP=4+2∴点P坐标(8+2,0)综上所述:满足条件的点P为:(8+2,0)或(,0)或(5,0)【点睛】本题考查了利用轴对称思想解决线段和最小值或周长最小的问题,以及等腰三角形的分类讨论问题,综合性较强,综合运用上述几何知识是解题的关键.21、(1)见解析;(2)OA、OC、EF.【解析】

(1)根据平行四边形的AD∥BC,AB∥CD,AD=BC,AB=CD,根据平行线的性质得到∠ADE=∠CBF,由垂直的定义得到∠AEB=∠CFD=90°,根据全等三角形的性质即可得到结论;(2)根据平行四边形的性质得到AO=CO,根据直角三角形的性质即可得到结论.【详解】(1)证明:∵四边形ABCD是平行四边形∴∴∵,,∴在和中∴∴(2)∵四边形ABCD是平行四边形,∴AO=CO,∵∠DOC=120°,∴∠AOE=60°,∴∠OAE=30°,∴AO=2OE,∴OC=2OE,∵OD=OB,DE=BF,∴OE=OF,∴EF=2OE.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.22、(1)证明见解析;(1).【解析】

(1)由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,可得AE=BF,可得BE+BF=AB,由勾股定理可得结论;(1)由全等三角形的性质可得S△AOE=S△BOF,可得重叠部分的面积为正方形面积的,即可求解.【详解】解:(1)在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°.∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.在△AOE和△BOF中,∴△AOE≌△BOF(ASA),∴AE=BF,∴BE+EF=BE+AE=AB在Rt△AOB中,AB1=OA1+OB1,且OA=OB,∴(BE+BF)1=1OB1,(1)∵△AOE≌△BOF,∴S△AOE=S△BOF,∴重叠部分的面积=S△AOB=S正方形ABCD=a1.故答案为:a1.【点睛】本题考查了正方形的性质和全等三角形的判定和性质,掌握全等三角形的判定是解题的关键.23、当AD=DE时,四边形BECD是矩形,理由见解析.【解析】

根据平行四边形的性质和已知条件易证四边形BECD为平行四边形,要使四边形BECD是矩形,根据矩形的定义,只要满足DB⊥BE即可,进而可得AD与DE的关系.【详解】解:当AD=DE时,四边形BECD是矩形,理由如下:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∵BE=AB,∴BE∥DC,BE=DC,∴四边形BECD为平行四边形,∵AD=DE,∴DB⊥BE,∴□BECD为矩形.【点睛】本题考查了平行四边形的性质、等腰三角形的性质和矩形的判定,属于常考题型,熟练掌握上述基本知识是解题的关键.24、(1)每件甲种商品价格为70元,每件乙种商品价格为60元;(2)该商店最多可以购进20件甲种商品【解析】

(1)分别设出甲、乙两种商品的价格,根据“用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同”列出方程,解方程即可得出答案;(2)分别设出购进甲、乙两种商品的件数,根据“投入的经费不超过3200元”列出不等式,解不等式即可得出答案.【详解】解:(1)设每件乙种商品价格为元,则每件甲种商品价格为()元,根据题意得:解得:.经检验,是原方程的解,则.答:每件甲种商品价格为元,每件乙种商品价格为元.(2)设购进甲种商品件,则购进乙种商品()件,根据题意得:,解得:.该商店最多可以购进件甲种商品.【点睛】本题考查的是分式方程在实际生活中的应用,认真审题,根据题意列出方程和不等式是解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论