




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°2.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是63.二次根式在实数范围内有意义,则x应满足的条件是(
)A.x≥1 B.x>1 C.x>﹣1 D.x≥﹣14.如果分式有意义,那么的取值范围是()A. B. C. D.5.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的座位简记为(12,12),则小明与小菲坐的位置为()A.同一排 B.前后同一条直线上 C.中间隔六个人 D.前后隔六排6.如图,在ABCD中,DE,BF分别是∠ADC和∠ABC的平分线,添加一个条件,仍无法判断四边形BFDE为菱形的是()A.∠A=60˚ B.DE=DF C.EF⊥BD D.BD是∠EDF的平分线7.已知实数满足,则代数式的值是()A.7 B.-1 C.7或-1 D.-5或38.下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.A.1 B.2 C.3 D.49.如图,在矩形中,点的坐标为,则的长是()A. B. C. D.10.如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为()A.40m B.80m C.160m D.不能确定二、填空题(每小题3分,共24分)11.如图,正方形的边长是,的平分线交于点,若点分别是和上的动点,则的最小值是_______.12.如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是_____.13.计算:=_____________。14.如图,正方形ABCD是由两个小正方形和两个小长方形组成的,根据图形写出一个正确的等式:_________.15.如图,在矩形ABCD中,AD=5,AB=3,点E是边BC上一点,若ED平分∠AEC,则ΔABE的面积为________.16.如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,,,将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边,则符合条件的点M的坐标为______.17.计算:__.18.已知不等式组的解集为,则的值是________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系xOy中,一次函数与x轴交于点A,与y轴交于点B.将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E.(1)求直线BE的解析式;(2)求点D的坐标;20.(6分)如图,直线与轴交于点,与轴交于点,与直线交于点,点的横坐标为3.(1)直接写出值________;(2)当取何值时,?(3)在轴上有一点,过点作轴的垂线,与直线交于点,与直线交于点,若,求的值.21.(6分)四边形中,,,,,垂足分别为、.(1)求证:;(2)若与相交于点,求证:.22.(8分)如图1,在△ABC中,∠BAC=90°,AB=AC,在△ABC内部作△CED,使∠CED=90°,E在BC上,D在AC上,分别以AB,AD为邻边作平行四边形ABFD,连接AF、AE、EF.(1)证明:AE=EF;(2)判断线段AF,AE的数量关系,并证明你的结论;(3)在图(1)的基础上,将△CED绕点C逆时针旋转,请判断(2)问中的结论是否成立?若成立,结合图(2)写出证明过程;若不成立,请说明理由23.(8分)如图,某一时刻垂直于地面的大楼的影子一部分在地上,另一部分在斜坡上.已知坡角,米,米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度.24.(8分)如图,直线与轴交于点,点是该直线上一点,满足.(1)求点的坐标;(2)若点是直线上另外一点,满足,且四边形是平行四边形,试画出符合要求的大致图形,并求出点的坐标.25.(10分)瑞安市文化创意实践学校是一所负责全市中小学生素质教育综合实践活动的公益类事业单位,学校目前可开出:创意手工创意表演、科技制作(创客)、文化传承、户外拓展等5个类别20多个项目课程.(1)学校3月份接待学生1000人,5月份增长到2560人,求该学校接待学生人数的平均月增长率是多少?(2)在参加“创意手工”体验课程后,小明发动本校同学将制作的作品义卖募捐.当作品卖出的单价是2元时,每天义卖的数量是150件;当作品的单价每涨高1元时,每天义卖的数量将减少10件.问:在作品单价尽可能便宜的前提下,当单价定为多少元时,义卖所得的金额为600元?26.(10分)根据《佛山﹣环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线将串联起狮山、乐平、三水新城、水都基地、白坭等城镇节点,在这项工程中,有一段4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天.求甲、乙两个工程队平均每天各完成多少米?
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.2、D【解析】
根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.3、A【解析】
二次根式在实数范围内有意义的条件是被开方数大于等于0,据此列不等式求出x的范围即可.【详解】由题意得:x-1≥0,则x≥1
,故答案为:A.【点睛】本题考查二次根式有意义的条件,属于简单题,基础知识扎实是解题关键.4、D【解析】
根据分式有意义,分母不等于0列不等式求解即可.【详解】解:由题意得,x+1≠0,
解得x≠-1.
故选:D.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.5、A【解析】
∵(12,6)表示12排6号,(12,12)表示12排12号,
∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.
故选A.【点睛】考查学生利用类比点的坐标解决实际问题的能力和阅读理解能力.6、A【解析】
先证明四边形BFDE是平行四边形,再根据菱形的判定定理逐项进行分析判断即可.【详解】由题意知:四边形ABCD是平行四边形,∴∠ADC=∠ABC,∠A=∠C,AD=BC,AB=CD,ABCD又∵DE,BF分别是∠ADC和∠ABC的平分线,∴∠ADE=∠FBC,在△ADE和△CBF中∴△ADE≌△CBF(ASA)∴AE=CF,DE=BF又∵AB=CD,ABCD,AE=CF∴DF=BE,DFBE、∴四边形BFDE是平行四边形.A、∵AB//CD,∴∠AED=∠EDC,又∵∠ADE=∠EDC,∴∠ADE=∠AED,∴AD=AE,又∵∠A=60°,∴△ADE是等边三角形,∴AD=AE=DE,无法判断平行四边形BFDE是菱形.B、∵DE=DF,∴平行四边形BFDE是菱形.C、∵EF⊥BD,∴平行四边形BFDE是菱形.D、∵BD是∠EDF的平分线,∴∠EDB=∠FDB,又∵DF//BE,∴∠FDB=∠EBD,∴∠EDB=∠EBD,∴ED=DB,∴平行四边形BFDE是菱形.故选A.【点睛】本题考查了平行四边形的性质,菱形的判定,正确掌握菱形的判定定理是解题的关键.7、A【解析】
将x2-x看作一个整体,然后利用因式分解法解方程求出x2-x的值,再整体代入进行求解即可.【详解】∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6;当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解;当x2﹣x=6时,x2﹣x+1=7,故选A.【点睛】本题考查了用因式分解法解一元二次方程,解本题的关键是把x2-x看成一个整体.8、C【解析】
根据立方根的概念即可求出答案.【详解】①2是8的立方根,故①正确;②4是64的立方根,故②错误;③是的立方根,故③正确;④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.故选C.【点睛】本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.9、C【解析】
连接OB,根过B作BM⊥x轴于M,据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【详解】解:连接OB,过B作BM⊥x轴于M,
∵点B的坐标是(1,4),
∴OM=1,BM=4,由勾股定理得:OB=,
∵四边形OABC是矩形,
∴AC=OB,
∴AC=,
故选:C.【点睛】本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.10、B【解析】
根据三角形中位线定理计算即可【详解】∵M、N分别是AC、BC中点,∴NM是△ACB的中位线,∴AB=2MN=80m,故选:B.【点睛】此题考查三角形中位线定理,解题关键在于掌握运算法则二、填空题(每小题3分,共24分)11、【解析】
过D作AE的垂线交AE于F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】解:解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=5,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=25,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=25,,即DQ+PQ的最小值为.【点睛】本题考查了轴对称-最短路线问题、勾股定理、作图与基本作图等知识点的应用,解此题的关键是根据轴对称的性质找出P'点,题型较好,难度较大.12、1.【解析】
利用平移的性质得到AE=CF,AE∥CF,BE=DF,BE∥DF,则可判断四边形AEFC和四边形BEFD都为平行四边形,然后根据平行四边形的面积公式,利用平移过程中扫过的面积=S▱AEFC+S▱BEFD进行计算.【详解】∵平移折线AEB,得到折线CFD,∴AE=CF,AE∥CF,BE=DF,BE∥DF,∴四边形AEFC和四边形BEFD都为平行四边形,∴平移过程中扫过的面积=S▱AEFC+S▱BEFD=1×3+1×3=1.故答案为:1.【点睛】此题考查平移的性质:对应边平行(或在同一直线上)且相等,平行四边形的判定定理.13、2+【解析】
按二次根式的乘法法则求解即可.【详解】解:.【点睛】本题考查的是二次根式的乘法运算,熟练掌握二次根式的乘法法则是解题的关键.14、【解析】由图可得,正方形ABCD的面积=,正方形ABCD的面积=,∴.故答案为:.15、1【解析】
首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=5,CD=AB=3,∴∠CED=∠ADE,∵ED平分∠AEC,∴∠AED=∠CED,∴∠EDA=∠AED,∴AD=AE=5,∴BE=AE2∴△ABE的面积=12BE•AB=12×4×3=故答案为:1.【点睛】本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.16、或.【解析】
由B、D坐标可求得直线BD的解析式,当M点在x轴上方时,则有CM∥AN,则可求出点M的坐标,代入直线BD解析式可求得M点的坐标,当M点在x轴下方时,同理可求得点M点的纵坐标,则可求得M点的坐标;【详解】∵,,∴OA=2,OB=4,∵将△OAB绕O点顺时针旋转90°得到△OCD,∴OC=OA=2,OD=OB=4,AB=CD,可知,,设直线BD的解析式为,把B、D两点的坐标代入得:,解得,∴直线BD的解析式为,当M点在x轴上方时,则有CM∥AN,即CM∥x轴,∴点M到x轴的距离等于点C到x轴的距离,∴M点的纵坐标为2,在中,令,可得,∴,当M点在x轴下方时,M点的纵坐标为-2,在中,令,可得,∴,综上所述,M的坐标为或.【点睛】本题主要考查了一次函数的综合,准确利用知识点是解题的关键.17、-【解析】
直接利用二次根式的性质分别计算得出答案.【详解】解:原式.故答案为:.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.18、【解析】
根据不等式的解集求出a,b的值,即可求解.【详解】解得∵解集为∴=1,3+2b=-1,解得a=1,b=-2,∴=2×(-3)=-6【点睛】此题主要考查不等式的解集,解题的关键是熟知不等式的性质及解集的定义.三、解答题(共66分)19、(1)直线BE的解析式为y=x+2;(2)D(-3,).【解析】
(1)先求出点A、B的坐标,继而根据勾股定理求出AB的长,根据折叠可得BD=BO,DE=OE,从而可得AD的长,设DE=OE=m,则AE=OA-m,在直角三角形AED中利用勾股定理求出m,从而得点E坐标,继而利用待定系数法进行求解即可;(2)过点D作DM⊥AO,垂足为M,根据三角形的面积可求得DM的长,继而可求得点D的坐标.【详解】(1),令x=0,则y=2,令y=0,则,解得:x=-6,∴A(-6,0),B(0,2),∴OA=6,OB=2,∴AB==4,∵折叠,∴∠BDE=∠BOA=90°,DE=EO,BD=BO=2,∴∠ADE=90°,AD=AB-BD=2,设DE=EO=m,则AE=AO-OE=6-m,在Rt△ADE中,AE2=AD2+DE2,即(6-m)2=m2+(2)2,解得:m=2,∴OE=2,∴E(-2,0),设直线BE的解析式为:y=kx+b,把B、E坐标分别代入得:,解得:,∴直线BE的解析式为y=x+2;(2)过点D作DM⊥AO,垂足为M,由(1)DE=2,AE=AO-OE=4,∵S△ADE=,即,∴DM=,∴点D的纵坐标为,把y=代入,得,解得:x=-3,∴D(-3,).【点睛】本题考查了折叠的性质,勾股定理的应用,待定系数法求一次函数解析式,三角形的面积,点的坐标等,熟练掌握并灵活运用相关知识是解题的关键.注意数形结合思想的运用.20、(1);(2)当时,;(3)或.【解析】
(1)先求出点E的坐标,再把E的坐标代入解析式即可(2)根据点E的坐标,结合图象即可解答(3)过作轴交直线于点、交直线于点,根据题意求出的坐标为,再令,得出的坐标为,根据OE,AB的解析式得出点的坐标为,点的坐标为,即可解答【详解】(1)∵直线与直线交于点,点的横坐标为3∴点的坐标为,代入中∴(2)∵点的坐标为,有图像可知,当时,.(3)过作轴交直线于点、交直线于点∵∴∴点的坐标为∴令,∴∴点的坐标为∵点,直线的解析式为,直线的解析式为∴点的坐标为,点的坐标为∴∴∴∴或∴或【点睛】此题考查一次函数中的直线位置关系,解题关键在于作辅助线21、(1)证明见解析;(2)证明见解析.【解析】
(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【详解】证明:(1)∵BE=DF,∴BE-EF=DF-EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,又AD=BC,∴四边形ABCD是平行四边形,∴AO=CO.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.22、(1)证明见解析;(2)AF=AE.证明见解析;(3)AF=AE成立.证明见解析.【解析】
(1)根据△ABC是等腰直角三角形,△CDE是等腰直角三角形,四边形ABFD是平行四边形,判定△ACE≌△FDE(SAS),进而得出AE=EF;(2)根据∠DFE+∠EAF+∠AFD=90°,即可得出△AEF是直角三角形,再根据AE=FE,得到△AEF是等腰直角三角形,进而得到AF=AE;(3)延长FD交AC于K,先证明△EDF≌△ECA(SAS),再证明△AEF是等腰直角三角形即可得出结论.【详解】(1)如图1,∵△ABC中,∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∵∠CED=90°,E在BC上,D在AC上,∴△CDE是等腰直角三角形,∴CE=CD,∵四边形ABFD是平行四边形,∴DF=AB=AC,∵平行四边形ABFD中,AB∥DF,∴∠CDF=∠CAB=90°,∵∠C=∠CDE=45°,∴∠FDE=45°=∠C,在△ACE和△FDE中,,∴△ACE≌△FDE(SAS),∴AE=EF;(2)AF=AE.证明:如图1,∵AB∥DF,∠BAD=90°,∴∠ADF=90°,∴Rt△ADF中,∠DAE+∠EAF+∠AFD=90°,∵△ACE≌△FDE,∴∠DAE=∠DFE,∴∠DFE+∠EAF+∠AFD=90°,即△AEF是直角三角形,又∵AE=FE,∴△AEF是等腰直角三角形,∴AF=AE;(3)AF=AE仍成立.证明:如图2,延长FD交AC于K.∵∠EDF=180°-∠KDC-∠EDC=135°-∠KDC,∠ACE=(90°-∠KDC)+∠DCE=135°-∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC,在△EDF和△ECA中,,∴△EDF≌△ECA(SAS),∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.【点睛】本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质等知识的综合应用,等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23、24米【解析】
过点D作DH⊥CE,DG⊥AC,在两个直角三角形中分别求得DH=2,BH=2,然后根据同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求得AG=GD=BC+BH=22米,最后求得大楼的高度即可.【详解】解:过点作.∵,∴.∵同一时刻1米的标杆影长为1米,∴.∴楼高(米).【点睛】本题考查了解直角三角形的应用,正确的构造两个直角三角形是解题的关键.24、(1)点坐标为;(2)点.【解析】
(1)先由直线y=-2x+10与x轴交于点A,求出点A坐标为(5,0),所以OA=5;再设点B坐标为(m,n),根据B是直线y=-2x+10上一点,及OB=OA,列出关于m,n的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于测量公司管理制度
- 工厂专业体系管理制度
- DB62T 4376-2021 油菜品种 汇丰1号
- 电协调措施方案(3篇)
- 宿舍静态管理方案(3篇)
- 整体庭院改造方案(3篇)
- 人员借调计划方案(3篇)
- 祠庙修缮方案(3篇)
- 电梯井道大修方案(3篇)
- 石材施工方案(3篇)
- a320mel放行偏差指南项ata21维护程序
- TY/T 4001.2-2018汽车自驾运动营地服务管理要求
- (整理)不同温度下空气中饱和水分含量及饱和蒸汽压
- 高中物理情境化选择题专题练习
- 内功四经内功真经真本全书
- 突发环境事件应急预案备案表
- 施工进度计划表(参考模板)
- 钢结构冷库施工方案
- DL∕T 2101-2020 架空输电线路固定翼无人机巡检系统
- 罗伊护理个案模板
- 小学数学新版本小学四年级小数加减法的课件
评论
0/150
提交评论