版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列说法错误的是()A.必然事件发生的概率为1 B.不确定事件发生的概率为0.5C.不可能事件发生的概率为0 D.随机事件发生的概率介于0和1之间2.若分式的值为0,则的值是()A. B. C.0 D.33.计算的结果是()A.4 B.± C.2 D.4.如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是()A.AO=OD B.EF=AD C.S△AEO=S△AOF D.S△ABC=2S△AEF5.在▱ABCD中,已知∠A=60°,则∠C的度数是()A.30° B.60° C.120° D.60°或120°6.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.7.下列事件中,是必然事件的是()A.在同一年出生的13名学生中,至少有2人出生在同一个月B.买一张电影票,座位号是偶数号C.晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来D.在标准大气压下,温度低于0℃时冰融化8.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A. B. C. D.9.如图,的对角线、交于点,平分交于点,,,连接.下列结论:①;②平分;③;④其中正确的个数有()A.个 B.个 C.个 D.个10.下列图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.点C是线段AB的黄金分割点(AC>BC),若AC=2则AB⋅BC=______.12.边长为2的等边三角形的面积为__________13.一张矩形纸片ABCD,已知,.小明按所给图步骤折叠纸片,则线段DG长为______.14.学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______________.15.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.16.D、E、F分别是△ABC各边的中点.若△ABC的周长是12cm,则△DEF的周长是____cm.17.已知一次函数的图象经过点,则m=____________18.如图,在中,连结.且,过点作于点,过点作于点,且,在的延长线上取一点,满足,则_______.三、解答题(共66分)19.(10分)如图1,在平面直角坐标系中,正方形ABCD顶点C(3,0),顶点D(0,4),过点A作AF⊥y轴于F点,过点B作x轴的垂线交过A点的反比例函数y=kx(k>0)的图象于E点,交x轴于G(1)求证:△CDO≌△DAF.(2)求反比例函数解析式及点E的坐标;(3)如图2,过点C作直线l∥AE,在直线l上是否存在一点P使△PAC是等腰三角形?若存在,求P点坐标,不存在说明理由.20.(6分)如图1,已知直线:交轴于,交轴于.(1)直接写出的值为______.(2)如图2,为轴负半轴上一点,过点的直线:经过的中点,点为轴上一动点,过作轴分别交直线、于、,且,求的值.(3)如图3,已知点,点为直线右侧一点,且满足,求点坐标.21.(6分)观察下列各式:①,②;③,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.22.(8分)为了方便居民低碳出行,我市公共自行车租赁系统(一期)试运行.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点、、、在伺一条直线上,测量得到座杆,,,且.求点到的距离.(结果精确到.参考数据:,,)23.(8分)近日,我校八年级同学进行了体育测试.为了解大家的身体素质情况,一个课外活动小组随机调查了部分同学的测试成绩,并将结果分为“优”、“良”、“中”、“差”四个等级,分别记作、、、;根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完善),请结合图中所给信息解答下列问题:(1)本次调查的学生总数为人;(2)在扇形统计图中,所对应扇形的圆心角度,并将条形统计图补充完整;(3)在“优”和“良”两个等级的同学中各有两人愿意接受进一步训练,现打算从中随机选出两位进行训练,请用列表法或画树状图的方法,求出所选的两位同学测试成绩恰好都为“良”的概率.24.(8分)已知方程组,当m为何值时,x>y?25.(10分)如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.(1)求证:AD=BE;(2)当△CDE的周长最小时,求CD的值;(3)求证:.26.(10分)如图,在△ABC中,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,∠MDN的两边分别与AB,AC相交于M,N两点,且∠MDN+∠BAC=180°.(1)求证AE=AF;(2)若AD=6,DF=2,求四边形AMDN的面积.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
A选项:∵必然事件发生的概率为1,故本选项正确;
B选项:∵不确定事件发生的概率介于1和0之间,故本选项错误;
C选项:∵不可能事件发生的概率为0,故本选项正确;
D选项:∵随机事件发生的概率介于0和1之间,故本选项正确;
故选B.2、D【解析】
根据分式为零的条件,即可完成解答.【详解】解:由分式为零的条件得,x-3=0,x+2≠0,解得x=3;故答案为D.【点睛】本题考查了分式为0的条件,即分子为零,分母不为0.3、C【解析】
根据二次根式的运算法则即可求出答案.【详解】解:原式==2,故选:C.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4、D【解析】
根据三角形中位线定理以及直角三角形斜边上的中线等于斜边的一半逐项分析即可.【详解】解:
∵EF是Rt△ABC的中位线,
∴EFBC,∵AD是斜边BC边上的中线,
∴AD=BC,
∴EF=AD,故选项B正确;
∵AE=BE,EO∥BD,
∴AO=OD,故选项A正确;
∵E,O,F,分别是AB,AD,AC中点,
∴EO=BD,OF=DC,
∵BD=CD,
∴OE=OF,
又∵EF∥BC,
∴S△AEO=S△AOF,故选项C正确;
∵EF∥BC,
∴△ABC∽△AEF,
∵EF是Rt△ABC的中位线,
∴S△ABC:S△AEF=4:1,
即S△ABC=4S△AEF≠2S△AEF,故选D错误,
故选:D.【点睛】本题考查了三角形中位线定理的运用、直角三角形斜边上的中线的性质以及全等三角形的判断和性质,证明EO,OF是三角形的中位线是解题的关键.5、B【解析】
由平行四边形的对角相等即可得出答案.【详解】∵四边形ABCD是平行四边形,∴∠C=∠A=60°;故选:B.【点睛】本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等是解题的关键.6、D【解析】
根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.7、A【解析】
必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A.在同一年出生的13名学生中,至少有2人出生在同一个月,属于必然事件;B.买一张电影票,座位号是偶数号,属于随机事件;C.晓丽乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来,属于随机事件;D.在标准大气压下,温度低于0℃时冰融化,属于不可能事件;故选:A.【点睛】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【解析】
∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:=≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.9、C【解析】
求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即可得到AO>DE;依据OE是△ABD的中位线,即可得到.【详解】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,
∴∠ADE=∠DAE=60°=∠AED,
∴△ADE是等边三角形,∴E是AB的中点,
∴DE=BE,∴∠ADB=90°,即AD⊥BD,
∴S▱ABCD=AD•BD,故①正确;
∵∠CDE=60°,∠BDE=30°,
∴∠CDB=∠BDE,
∴DB平分∠CDE,故②正确;
∵Rt△AOD中,AO>AD,
∴AO>DE,故③错误;
∵O是BD的中点,E是AB的中点,
∴OE是△ABD的中位线,∴,故④正确;正确的有3个故选C【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式的综合运用,熟练掌握性质定理和判定定理是解题的关键.10、D【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形.故此选项错误;
B、既不是轴对称图形,也不是中心对称图形.故此选项错误;
C、不是轴对称图形,是中心对称图形.故此选项错误;
D、是轴对称图形,是中心对称图形.故此选项正确.
故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每小题3分,共24分)11、4【解析】
根据黄金分割的概念把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割.【详解】由题意得:AB⋅BC=AC2=4.故答案为:4.【点睛】此题考查黄金分割,解题关键可知与掌握其概念.12、【解析】
根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴∴故答案为:【点睛】考查等边三角形的性质以及面积,勾股定理等,熟练掌握三线合一的性质是解题的关键.13、【解析】
首先证明△DEA′是等腰直角三角形,求出DE,再说明DG=GE即可解决问题.【详解】解:由翻折可知:DA′=A′E=4,∵∠DA′E=90°,∴DE=,∵A′C′=2=DC′,C′G∥A′E,∴DG=GE=,故答案为:.【点睛】本题考查翻折变换,等腰直角三角形的判定和性质,平行线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14、9;9【解析】【分析】根据中位数和众数定义可以分析出结果.【详解】这组数据中9出现次数最多,故众数是9;按顺序最中间是9,所以中位数是9.故答案为9;9【点睛】本题考核知识点:众数,中位数.解题关键点:理解众数,中位数的定义.15、1或1.【解析】
试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,①当30度角是等腰三角形的顶角时,如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.②当30度角是底角时,如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=11°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.考点:正方形的性质;等腰三角形的性质.16、1【解析】如图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×12=1cm,故答案为:1.17、1【解析】
把(m,6)代入y=2x+4中,得到关于m的方程,解方程即可.【详解】解:把(m,6)代入y=2x+4中,得
6=2m+4,解得m=1.
故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.18、【解析】
根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP.【详解】解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=
,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=1,故答案为1.【点睛】本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.三、解答题(共66分)19、(1)见解析;(2)为y=28x,点E的坐标为(7,1);(3)在直线l上存在一点P使△PAC是等腰三角形,点P的坐标为(﹣3,6),(﹣2,5),(8,﹣5),(﹣76,【解析】
(1)利用同角的余角相等可得出∠CDO=∠DAF,结合∠DOC=∠AFD=90°及DC=AD,可证出△CDO≌△DAF;(2)利用全等三角形的性质可求出AF,FD的长,进而可得出点A的坐标,由点A的坐标,利用反比例函数图象上点的坐标特征可求出反比例函数解析式,同(1)可证出△CDO≌△BCG,利用全等三角形的性质及反比例函数图象上点的坐标特征可求出点E的坐标;(3)由点A,E的坐标,利用待定系数法可求出直线AE的解析式,结合直线l∥AE及点C的坐标可求出直线l的解析式,设点P的坐标为(m,﹣m+3),结合点A,C的坐标可得出AC2,AP2,CP2的值,分AC=AP,CA=CP及PA=PC三种情况可得出关于m的方程,解之即可得出点P的坐标.【详解】(1)证明:∵四边形ABCD为正方形,∴AD=DC,∠ADC=90°,∴∠ADF+∠CDO=90°.∵∠ADF+∠DAF=90°,∴∠CDO=∠DAF.在△CDO和△DAF中,∠DOC∴△CDO和△DAF(AAS).(2)解:∵点C的坐标为(3,0),点D的坐标为(0,1),∴OC=3,OD=1.∵△CDO和△DAF,∴FA=OD=1,FD=OC=3,∴OF=OD+FD=7,∴点A的坐标为(1,7).∵反比例函数y=kx(k>0)过点A∴k=1×7=28,∴反比例函数解析式为y=28x同(1)可证出:△CDO≌△BCG,∴GB=OC=3,GC=OD=1,∴OG=OC+GC=7,∴点G的坐标为(7,0).当x=7时,y=287=1∴点E的坐标为(7,1).(3)解:设直线AE的解析式为y=ax+b(a≠0),将A(1,7),E(7,1)代入y=ax+b,得:4a+b=77a+b=4解得:a=-1b=11∴直线AE的解析式为y=﹣x+2.∵直线l∥AE,且直线l过点C(3,0),∴直线l的解析式为y=﹣x+3.设点P的坐标为(m,﹣m+3),∵点A的坐标为(1,7),点C的坐标为(3,0),∴AP2=(m﹣1)2+(﹣m+3﹣7)2=2m2+32,AC2=(3﹣1)2+(0﹣7)2=50,CP2=(m﹣3)2+(﹣m+3)2=2m2﹣12m+4.分三种情况考虑:①当AC=AP时,50=2m2+32,解得:m1=3(舍去),m2=﹣3,∴点P的坐标为(﹣3,6);②当CA=CP时,50=2m2﹣12m+4,解得:m3=﹣2,m1=8,∴点P的坐标为(﹣2,5)或(8,﹣5);③当PA=PC时,2m2+32=2m2﹣12m+4,解得:m=﹣76∴点P的坐标为(﹣76,25综上所述:在直线l上存在一点P使△PAC是等腰三角形,点P的坐标为(﹣3,6),(﹣2,5),(8,﹣5),(﹣76,25【点睛】本题考查了正方形的性质,全等三角形的判定与性质、反比例函数图象上点的坐标特征、待定系数法求反比例函数及一次函数解析式、平行线的性质以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的判定定理AAS证出△CDO≌△DAF;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分AC=AP,CA=CP及PA=PC三种情况,找出关于m的方程.20、(1)k=-1;(2)或;(3)【解析】
(1)将代入,求解即可得出;(2)先求得直线为,用含t的式子表示MN,根据列出方程,分三种情况讨论,可得到或;(3)在轴上取一点,连接,作交直线于,作轴于,再证出,得到直线的解析式为,将代入,得,可得出.【详解】解:(1)将代入,得,解得.故答案为:(2)∵在直线中,令,得,∴,∵,∴线段的中点的坐标为,代入,得,∴直线为,∵轴分别交直线、于、,,∴,,∴,,∵,∴,分情况讨论:①当时,,解得:.②当时,,解得:.③当时,,解得:,舍去.综上所述:或.(3)在轴上取一点,连接,作交直线于,作轴于,∴,∴,∵,∴,∵,∴,∴,∴,∴,∴,∴,∴,,∴,∴,∴直线的解析式为,将代入,得,∴.【点睛】本题考查一次函数与几何的综合.要准确理解题意,运用数形结合、分类讨论的思想解答.21、(1);(2);(3)详见解析.【解析】试题分析:(1)认真观察题中所给的式子,得出其规律并根据规律写出第④个等式;
(2)根据规律写出含n的式子即可;
(3)结合二次根式的性质进行化简求解验证即可.试题解析:(1)(2)(3)故答案为(1)22、58【解析】
作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【详解】解:∵CE=15cm,CD=30cm,AD=15cm.∴AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97≈58(cm).答:点E到AB的距离约为58cm.【点睛】本题考查的是解直角三角形的知识,正确找出辅助线、掌握锐角三角函数的概念是解题的关键.23、(1)50;(2)144°,图见解析;(3).【解析】
(1)根据“优”的人数和所占的百分比即可求出总人数;
(2)用360°乘以“良”所占的百分比求出B所对应扇形的圆心角;用总人数减去“优”、“良”、“差”的人数,求出“中”的人数,即可补全统计图;
(3)根据题意画出树状图得出所以等情况数和所选的两位同学测试成绩恰好都为“良”的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生总数为:15÷30%=50(人);
故答案为:50;
(2)在扇形统计图中,B所对应扇形的圆心角是360°×=144°;
“中”等级的人数是:50-15-20-5=10(人),补图如下:
故答案为:10;
(3)“优秀”和“良”的分别用A1,A2,和B1,B2表示,则画树状图如下:
共有12种情况,所选的两位同学测试成绩恰好都为“良”的有2种,
则所选的两位同学测试成绩恰好都为“良”的概率是.【点睛】此题考查列表法或树状图法求概率.解题关键在于掌握列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、.【解析】
解含有参数m的二元一次方程组,得到关于m的x、y的值,再根据x>y的关系解不等式求出m的取值范围即可.【详解】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y,∴m﹣3>﹣m+5,解得m>4,∴当m>4时,x>y.25、(1)见解析;(1);(3)见解析【解析】
(1)先判断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商业广场共建协议
- 2024年国际货物买卖合同(汽车)
- 2024年工程设备租赁居间协议
- 2024年广告发布合同媒体责任界定协议
- 2024年农副产品销售合同
- 货运交通组织学课程设计
- 2024年工程项目居间合同书样本
- 2024年居间合同违约诉讼模板
- (2024版)包含定制设计商品的买卖合同
- 2024年人力资源服务与派遣合同
- 沪科版(2024新版)八年级全册物理第一学期期中学情评估测试卷(含答案)
- 浙江省宁波市余姚市兰江中学2022-2023学年七年级上学期12月月考数学试题
- 2024至2030年中国高低压开关柜行业市场全景分析及投资策略研究报告
- 《新时代公民道德建设实施纲要》、《新时代爱国主义教育实施纲要》知识竞赛试题库55题(含答案)
- 2024年国家开放大学电大《职业素质》形成性考核四
- 2024年全国社会保障基金理事会招聘18人历年(高频重点复习提升训练)共500题附带答案详解
- 工厂安全培训考试题(完美)
- DL∕T 5210.4-2018 电力建设施工质量验收规程 第4部分:热工仪表及控制装置
- 2024-2025学年牛津版小学六年级英语上册期中检查试题及答案
- SAP项目实施服务合同(2024版)
- 集体荣誉感主题教育班会
评论
0/150
提交评论