2023年河北省保定市竞秀区数学八下期末联考模拟试题含解析_第1页
2023年河北省保定市竞秀区数学八下期末联考模拟试题含解析_第2页
2023年河北省保定市竞秀区数学八下期末联考模拟试题含解析_第3页
2023年河北省保定市竞秀区数学八下期末联考模拟试题含解析_第4页
2023年河北省保定市竞秀区数学八下期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,数轴上点A表示的数为()A. B. C. D.π2.下列各式从左到右的变形中,是因式分解的为()A. B.C. D.3.下图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn0)的大致图像是()A. B.C. D.4.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3>y1>y2D.y1>y2>y35.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥36.如图,点A,B分别在函数y=(k1>0)与函数y=(k2<0)的图象上,线段AB的中点M在x轴上,△AOB的面积为4,则k1﹣k2的值为()A.2 B.4 C.6 D.87.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A., B.,C., D.,8.化简:()A.2 B.-2 C.4 D.-49.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2s,方差如下表:选手甲乙丙丁方差(s2)0.0200.0190.0210.022则这四人中发挥最稳定的是()A.甲 B.乙 C.丙 D.丁10.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为()A.(-3,-2) B.(-3,2) C.(-2,3) D.(2,3)二、填空题(每小题3分,共24分)11.已知点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,则=___.12.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=1.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.13.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是.14.已知关于x的方程有两个不相等的实数根,则a的取值范围是_____________.15.将直线y=ax+5的图象向下平移2个单位后,经过点A(2,1),则平移后的直线解析式为_____.16.某学校八年级班有名同学,名男生的平均身高为名女生的平均身高,则全班学生的平均身高是__________.17.点P(a,a-3)在第四象限,则a的取值范围是_____.18.如图,的对角线、相交于点,经过点,分别交、于点、,已知的面积是,则图中阴影部分的面积是_____.三、解答题(共66分)19.(10分)如图,在△ABC中,∠B=30°,∠C=45°,AC=22.求BC边上的高及△ABC的面积.20.(6分)我们知道:等腰三角形两腰上的高相等.(1)请你写出它的逆命题:______.(2)逆命题是真命题吗?若是,请证明;若不是,请举出反例(要求:画出图形,写出已知,求证和证明过程).21.(6分)先化简,再求值:,其中x=﹣1.22.(8分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.(1)求甲每小时加工多少个零件?(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?23.(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.24.(8分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?25.(10分)(知识链接)连结三角形两边中点的线段,叫做三角形的中位线.(动手操作)小明同学在探究证明中位线性质定理时,是沿着中位线将三角形剪开然后将它们无缝隙、无重叠的拼在一起构成平行四边形,从而得出:三角形中位线平行于第三边且等于第三边的一半.(性质证明)小明为证明定理,他想利用三角形全等、平行四边形的性质来证明.请你帮他完成解题过程(要求:画出图形,根据图形写出已知、求证和证明过程).26.(10分)某校举办的八年级学生数学素养大赛共设个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):七巧板拼图趣题巧解数学应用小米小麦若七巧板拼图,趣题巧解,数学应用三项得分分别按折算计入总分,最终谁能获胜?若七巧板拼图按折算,小麦(填“可能”或“不可能”)获胜.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据勾股定理,可得答案.【详解】,,A点表示的数是,故选B.【点睛】本题考查了实数与数轴,利用勾股定理是解题关键.2、D【解析】

根据把整式变成几个整式的积的过程叫因式分解进行分析即可.【详解】A、是整式的乘法运算,不是因式分解,故A不正确;B、是积的乘方,不是因式分解,故B不正确;C、右边不是整式乘积的形式,故C不正确;D、是按照平方差公式分解的,符合题意,故D正确;故选:D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.3、C【解析】

根据一次函数图像与系数的关系以及正比例函数图像与系数的关系逐一对各选项进行判断,然后进一步得出答案即可.【详解】A:由一次函数图像可知:m>0,n>0,则mn>0,由正比例函数图像可得:mn<0,互相矛盾,故该选项错误;B:由一次函数图像可知:m>0,n<0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;C:由一次函数图像可知:m﹤0,n>0,则此时mn﹤0,由正比例函数图像可得:mn<0,故该选项正确;D:由一次函数图像可知:m﹤0,n﹥0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;故选:C.【点睛】本题主要考查了正比例函数图像以及一次函数图像与系数的关系,熟练掌握相关概念是解题关键.4、D【解析】k=-3<0,所以函数y随x增大而减小,所以y1>y2>y3,所以选D.5、D【解析】

解不等式组得:,∵不等式组的解集为x<3∴m的范围为m≥3,故选D.6、D【解析】

过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D,然后根据平行与中点得出OC=OD,设点A(a,d),点B(b,﹣d),代入到反比例函数中有k1=ad,k2=﹣bd,然后利用△AOB的面积为4得出ad+bd=8,即可求出k1﹣k2的值.【详解】过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D∴AC∥BD∥x轴∵M是AB的中点∴OC=OD设点A(a,d),点B(b,﹣d)代入得:k1=ad,k2=﹣bd∵S△AOB=4∴整理得ad+bd=8∴k1﹣k2=8故选:D.【点睛】本题主要考查反比例函数与几何综合,能够根据△AOB的面积为4得出ad+bd=8是解题的关键.7、B【解析】

根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故A选项不符合题意;B、AB=CD,AO=CO不能证明四边形ABCD是平行四边形,故本选项符合题意;C、∵AD//BC,AD=BC,∴四边形ABCD是平行四边形,故C选项不符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD,∴∠ABC=∠ADC,∵∠BAD=∠BCD,∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不符合题意,故选B.【点睛】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.8、A【解析】

根据二次根式的性质解答.【详解】解:.故选:A.【点睛】本题主要考查了根据二次根式的性质化简.解题的关键是掌握二次根式的性质.9、B【解析】分析:根据方差的意义解答.详解:从方差看,乙的方差最小,发挥最稳定.故选B.点睛:考查方差的意义,方差越小,成绩越稳定.10、A【解析】对于平行四边形MNEF,点N的对称点即为点F,所以点F到X轴的距离为2,到Y轴的距离为1.即点N到X、Y轴的距离分别为2、1,且点N在第三象限,所以点N的坐标为(—1,—2)二、填空题(每小题3分,共24分)11、3【解析】

将点A(a,b)带入y=-x+3的图象与反比例函数中,即可求出a+b=3,ab=1,再根据=进行计算.【详解】∵点A(a,b)是一次函数的图像与反比例函数的图像的一个交点,∴a+b=3,ab=1,∴==3.故答案是:3.【点睛】考查了一次函数和反比例函数上点的坐标特点,解题关键是利用图象上点的坐标满足函数的解析式.12、1+2【解析】

取DE的中点N,连结ON、NG、OM.根据勾股定理可得.在点M与G之间总有MG≤MO+ON+NG(如图1),M、O、N、G四点共线,此时等号成立(如图2).可得线段MG的最大值.【详解】如图1,取DE的中点N,连结ON、NG、OM.∵∠AOB=90°,∴OM=AB=2.同理ON=2.∵正方形DGFE,N为DE中点,DE=1,∴.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值1+2.故答案为:1+2.【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.13、(0,5)【解析】

试题分析:先由矩形的性质得到AB=OC=8,BC=OA=10,再根据折叠的性质得AE=AO=10,DE=DO,在Rt△ABE中,利用勾股定理可计算出BE=6,则CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中根据勾股定理有x2=(8﹣x)2+42,解方程求出x,即可确定D点坐标.解:∵四边形ABCD为矩形,∴AB=OC=8,BC=OA=10,∵纸片沿AD翻折,使点O落在BC边上的点E处,∴AE=AO=10,DE=DO,在Rt△ABE中,AB=8,AE=10,∴BE=6,∴CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中,∵DE2=CD2+CE2,∴x2=(8﹣x)2+42,∴x=5,∴D点坐标为(0,5).故答案为(0,5).14、且【解析】

由题意可知方程根的判别式△>0,于是可得关于a的不等式,解不等式即可求出a的范围,再结合二次项系数不为0即得答案.【详解】解:根据题意,得:,且,解得:且.故答案为:且.【点睛】本题考查了一元二次方程的根的判别式和一元一次不等式的解法,属于基本题型,熟练掌握一元二次方程根的判别式和方程根的个数之间的关系是解题的关键.15、y=-x+1.【解析】

根据一次函数的平移可得直线y=ax+5的图象向下平移2个单位后得y=ax+1,然后把(2,1)代入y=ax+1即可求出a的值,问题得解.【详解】解:由一次函数y=ax+5的图象向下平移2个单位后得y=ax+1,∵经过点(2,1),∴1=2a+1,解得:a=-1,∴平移后的直线的解析式为y=-x+1,故答案为:y=-x+1.【点睛】本题考查一次函数图像上的点的应用和图像平移规律,其中一次函数图像上的点的应用是解答的关键,即将点的坐标代入解析式,解析式成立,则点在函数图像上.16、【解析】

只要运用求平均数公式:即可求得全班学生的平均身高.【详解】全班学生的平均身高是:.故答案为:1.【点睛】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.17、0<a<3【解析】

根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】∵点P(a,a-3)在第四象限,∴,解得0<a<3.18、【解析】

只要证明,可得,即可解决问题.【详解】四边形是平行四边形,,,,,,.故答案为:.【点睛】本题考查平行四边形的性质。全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.三、解答题(共66分)19、2,2+23.【解析】

先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由AC=22得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.【详解】∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵AC=22,∴2AD2=AC2,即2AD2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD=AB2∴BC=BD+CD=23+2,∴S△ABC=12BC⋅AD=12(23+2)×2=2+2【点睛】此题考查勾股定理,解题关键在于求出BD的长.20、(1)两边上的高相等的三角形是等腰三角形;(2)是,证明见解析.【解析】

(1)根据逆命题的定义即可写出结论;(2)根据题意,写出已知和求证,然后利用HL证出Rt△BCD≌Rt△CBE,从而得出∠ABC=∠ACB,然后根据等角对等边即可证出结论.【详解】(1)等腰三角形两腰上的高相等的逆命题是两边上的高相等的三角形是等腰三角形,故答案为:两边上的高相等的三角形是等腰三角形;(2)如图,已知CD和BE是AB和AC边上的高,CD=BE,求证:AB=AC;证明:如图,在△ABC中,BE⊥AC,CD⊥AB,且BE=CD.∵BE⊥AC,CD⊥AB,∴∠CDB=∠BEC=90°,在Rt△BCD与Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.【点睛】此题考查的是写一个命题的逆命题、全等三角形的判定及性质和等腰三角形的性质,掌握逆命题的定义、全等三角形的判定及性质和等角对等边是解决此题的关键.21、【解析】

解:原式=(1+)====把x=-1代入得原式=22、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.【解析】

(1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求解,(2)乙最多可以耽搁多长时间,这是一个不等式,把乙的完成的工作量+甲完成的工作量≥1000,【详解】解:(1)设甲每小时加工x个零件,则乙每小时加工(x﹣10)个零件,根据题意,得:=,解得:x=50,经检验x=50是分式方程的解,答:甲每小时加工50个零件,则乙每小时加工40个零件;(2)设乙耽搁的时间为x小时,根据题意,得:50x+(50+40)(12﹣x)≥1000,解得:x≤2,答:乙最多可以耽搁2小时.【点睛】本题主要考查分式方程和一元一次不等式的实际应用23、(1)-2,1;(2)x=3;(3)4m.【解析】

(1)因式分解多项式,然后得结论;

(2)两边平方,把无理方程转化为整式方程,求解,注意验根;

(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1),,所以或或,,;故答案为,1;(2),方程的两边平方,得即或,,当时,,所以不是原方程的解.所以方程的解是;(3)因为四边形是矩形,所以,设,则因为,,两边平方,得整理,得两边平方并整理,得即所以.经检验,是方程的解.答:的长为.【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.24、(1)30米/分;(2)见解析;(3)当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.【解析】

(1)由图象可知t=5时,s=11米,根据速度=路程÷时间,即可解答;(2)根据图象提供的信息,可知当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(110-101)=41米,甲到达图书馆还需时间;41÷30=15(分),所以35+15=1(分),所以当s=0时,横轴上对应的时间为1.(3)分别求出当12.5≤t≤35时和当35<t≤1时的函数解析式,根据甲、乙两人相距360米,即s=360,分别求出t的值即可.【详解】(1)甲行走的速度:11÷5=30(米/分);(2)当t=35时,甲行走的路程为:30×35=101(米),乙行走的路程为:(35-5)×1=110(米),∴当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(110-101)=41米,∴甲到达图书馆还需时间;41÷30=15(分),∴35+15=1(分),∴当s=0时,横轴上对应的时间为1.补画的图象如图所示(横轴上对应的时间为1),(3)如图,设乙出发经过x分和甲第一次相遇,根据题意得:11+30x=1x,解得:x=7.5,7.5+5=12.5(分),由函数图象可知,当t=12.5时,s=0,∴点B的坐标为(12.5,0),当12.5≤t≤35时,设BC的解析式为:s=kt+b,(k≠0),把C(35,41),B(12.5,0)代入可得:解得:,∴s=20t-21,当35<t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论