




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE172022版高考数学大一轮复习第八章立体几何8.5直线、平面垂直的判定与性质教师用书文新人教版1.直线与平面垂直(1)定义如果直线l与平面α内的任意一条直线都垂直,那么直线l与平面α垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(a,b⊂α,a∩b=O,l⊥a,l⊥b))⇒l⊥α性质定理垂直于同一个平面的两条直线平行eq\b\lc\\rc\}(\a\vs4\al\co1(a⊥α,b⊥α))⇒a∥b2.平面与平面垂直(1)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,那么这两个平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(l⊥α,l⊂β))⇒α⊥β性质定理两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(α⊥β,l⊂β,α∩β=a,l⊥a))⇒l⊥α【知识拓展】重要结论:(1)假设两平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(2)假设一条直线垂直于一个平面,那么它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,那么这一条直线与另一个平面也垂直.【思考辨析】判断以下结论是否正确(请在括号中打“√〞或“×〞)(1)直线l与平面α内的无数条直线都垂直,那么l⊥α.(×)(2)垂直于同一个平面的两平面平行.(×)(3)直线a⊥α,b⊥α,那么a∥b.(√)(4)假设α⊥β,a⊥β⇒a∥α.(×)(5)假设直线a⊥平面α,直线b∥α,那么直线a与b垂直.(√)1.(教材改编)以下命题中不正确的选项是()A.如果平面α⊥平面β,且直线l∥平面α,那么直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ答案A解析根据面面垂直的性质,知A不正确,直线l可能平行平面β,也可能在平面β内.2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,那么“α⊥β〞是“a⊥b〞的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件答案A解析假设α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.3.设m、n是两条不同的直线,α、β是两个不同的平面,那么()A.假设m⊥n,n∥α,那么m⊥αB.假设m∥β,β⊥α,那么m⊥αC.假设m⊥β,n⊥β,n⊥α,那么m⊥αD.假设m⊥n,n⊥β,β⊥α,那么m⊥α答案C解析A中,由m⊥n,n∥α,可得m⊂α或m∥α或m与α相交,错误;B中,由m∥β,β⊥α,可得m⊂α或m∥α或m与α相交,错误;C中,由m⊥β,n⊥β,可得m∥n,又n⊥α,那么m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α,可得m与α相交或m⊂α或m∥α,错误.4.(2022·深圳模拟)在正四面体ABCD中,E,F,G分别是BC,CD,DB的中点,下面的结论不正确的选项是()A.BC∥平面AGFB.EG⊥平面ABFC.平面AEF⊥平面BCDD.平面ABF⊥平面BCD答案C解析易知点A在平面BCD上的射影在底面的中心,而中心不在EF上,所以平面AEF⊥平面BCD错误,选C.5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)假设PA=PB=PC,那么点O是△ABC的________心.(2)假设PA⊥PB,PB⊥PC,PC⊥PA,那么点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.∵PC⊥PA,PB⊥PC,PA∩PB=P,∴PC⊥平面PAB,AB⊂平面PAB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH为△ABC底边上的高,即O为△ABC的垂心.题型一直线与平面垂直的判定与性质例1(2022·全国甲卷改编)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=eq\f(5,4),EF交BD于点H.将△DEF沿EF折到△D′EF的位置.OD′=eq\r(10).证明:D′H⊥平面ABCD.证明由得AC⊥BD,AD=CD.又由AE=CF得eq\f(AE,AD)=eq\f(CF,CD),故AC∥EF.因此EF⊥HD,从而EF⊥D′H.由AB=5,AC=6得DO=BO=eq\r(AB2-AO2)=4.由EF∥AC得eq\f(OH,DO)=eq\f(AE,AD)=eq\f(1,4).所以OH=1,D′H=DH=3.于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.又D′H⊥EF,而OH∩EF=H,且OH,EF⊂平面ABCD,所以D′H⊥平面ABCD.思维升华证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直那么需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的根本思想.(2022·江苏)如图,在直三棱柱ABCA1B1C1中,AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.题型二平面与平面垂直的判定与性质例2如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面PAD;(2)求证:平面EFG⊥平面EMN.证明(1)方法一取PA的中点H,连接EH,DH.又E为PB的中点,所以EH綊eq\f(1,2)AB.又CD綊eq\f(1,2)AB,所以EH綊CD.所以四边形DCEH是平行四边形,所以CE∥DH.又DH⊂平面PAD,CE⊄平面PAD.所以CE∥平面PAD.方法二连接CF.因为F为AB的中点,所以AF=eq\f(1,2)AB.又CD=eq\f(1,2)AB,所以AF=CD.又AF∥CD,所以四边形AFCD为平行四边形.因此CF∥AD,又CF⊄平面PAD,AD⊂平面PAD,所以CF∥平面PAD.因为E,F分别为PB,AB的中点,所以EF∥PA.又EF⊄平面PAD,PA⊂平面PAD,所以EF∥平面PAD.因为CF∩EF=F,故平面CEF∥平面PAD.又CE⊂平面CEF,所以CE∥平面PAD.(2)因为E、F分别为PB、AB的中点,所以EF∥PA.又因为AB⊥PA,所以EF⊥AB,同理可证AB⊥FG.又因为EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG.所以AB⊥平面EFG.又因为M,N分别为PD,PC的中点,所以MN∥CD,又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又因为MN⊂平面EMN,所以平面EFG⊥平面EMN.引申探究1.在本例条件下,证明:平面EMN⊥平面PAC.证明因为AB⊥PA,AB⊥AC,且PA∩AC=A,所以AB⊥平面PAC.又MN∥CD,CD∥AB,所以MN∥AB,所以MN⊥平面PAC.又MN⊂平面EMN,所以平面EMN⊥平面PAC.2.在本例条件下,证明:平面EFG∥平面PAC.证明因为E,F,G分别为PB,AB,BC的中点,所以EF∥PA,FG∥AC,又EF⊄平面PAC,PA⊂平面PAC,所以EF∥平面PAC.同理,FG∥平面PAC.又EF∩FG=F,所以平面EFG∥平面PAC.思维升华(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2022·江苏)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)由,DE为△ABC的中位线,∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,∴DE∥A1C1,又∵DE⊄平面A1C1F,A1C1⊂平面A1C1F,∴DE∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1B1⊥A1C1,且A1B1∩AA1=A1,∴A1C1⊥平面ABB1A1,∵B1D⊂平面ABB1A1,∴A1C1⊥B1D,又∵A1F⊥B1D,且A1F∩A1C1=A1,∴B1D⊥平面A1C1F,又∵B1D⊂平面B1DE,∴平面B1DE⊥平面A1C1F.题型三直线、平面垂直的综合应用例3如下图,在四棱锥P—ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,BD=2AD=8,AB=2DC=4eq\r(5).(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;(2)求四棱锥P—ABCD的体积.(1)证明在△ABD中,∵AD=4,BD=8,AB=4eq\r(5),∴AD2+BD2=AB2,∴AD⊥BD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,∴BD⊥平面PAD.又BD⊂平面MBD,∴平面MBD⊥平面PAD.(2)解过P作PO⊥AD,∵平面PAD⊥平面ABCD,∴PO⊥平面ABCD,即PO为四棱锥P—ABCD的高.又△PAD是边长为4的等边三角形,∴PO=2eq\r(3).在四边形ABCD中,AB∥DC,AB=2DC,∴四边形ABCD为梯形.在Rt△ADB中,斜边AB边上的高为eq\f(4×8,4\r(5))=eq\f(8\r(5),5),此即为梯形的高.∴S四边形ABCD=eq\f(2\r(5)+4\r(5),2)×eq\f(8\r(5),5)=24.∴VP—ABCD=eq\f(1,3)×24×2eq\r(3)=16eq\r(3).思维升华垂直关系综合题的类型及解法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.(2)垂直与平行结合问题,求解时应注意平行、垂直的性质及判定的综合应用.(3)垂直与体积结合问题,在求体积时,可根据线面垂直得到表示高的线段,进而求得体积.(2022·全国乙卷)如图,正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.(1)证明因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.因为PD∩DE=D,PD,DE都在平面PED内,所以AB⊥平面PED,又PG在平面PED内,故AB⊥PG.又由可得,PA=PB,从而G是AB的中点.(2)解在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.理由如下:由可得PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,PC∩PA=P,PC与PA都在平面PAC中,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=eq\f(2,3)CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=eq\f(2,3)PG,DE=eq\f(1,3)PC.由,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2eq\r(2).在等腰直角三角形EFP中,可得EF=PF=2,所以四面体PDEF的体积V=eq\f(1,3)×eq\f(1,2)×2×2×2=eq\f(4,3).17.立体几何证明问题中的转化思想典例(12分)如下图,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.思想方法指导(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;(2)线线关系是线面关系、面面关系的根底.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要标准.标准解答证明(1)如下图,连接NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD.[2分]∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形,[3分]∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,∴四边形AA1KN为平行四边形,∴AN∥A1K.[4分]∵A1K⊂平面A1MK,AN⊄平面A1MK,∴AN∥平面A1MK.[6分](2)如下图,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1.[8分]在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C.[10分]∴MK⊥B1C.∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK.[12分]1.直线m,n和平面α,β,假设α⊥β,α∩β=m,要使n⊥β,那么应增加的条件是()A.n⊂α且m∥n B.n∥αC.n⊂α且n⊥m D.n⊥α答案C解析由面面垂直的性质定理知选C.2.设m,n是两条不同的直线,α,β是两个不同的平面,以下命题中正确的选项是()A.假设α⊥β,m⊂α,n⊂β,那么m⊥nB.假设α∥β,m⊂α,n⊂β,,那么m∥nC.假设m⊥n,m⊂α,n⊂β,那么α⊥βD.假设m⊥α,m∥n,n∥β,那么α⊥β答案D解析A中,m与n可垂直、可异面、可平行;B中,m与n可平行、可异面;C中,假设α∥β,仍然满足m⊥n,m⊂α,n⊂β,故C错误;应选D.3.(2022·包头模拟)如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,那么以下表达正确的选项是()A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE与B1C1是异面直线,且AE⊥B1C1D.A1C1∥平面AB1E答案C解析A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确,应选C.4.正方体ABCD-A′B′C′D′中,E为A′C′的中点,那么直线CE垂直于()A.A′C′B.BDC.A′D′D.AA′答案B解析连接B′D′,∵B′D′⊥A′C′,B′D′⊥CC′,且A′C′∩CC′=C′,∴B′D′⊥平面CC′E.而CE⊂平面CC′E,∴B′D′⊥CE.又∵BD∥B′D′,∴BD⊥CE.5.如下图,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的选项是()A.①② B.①②③C.① D.②③答案B解析对于①,∵PA⊥平面ABC,∴PA⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,OM⊄平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.6.如图,∠BAC=90°,PC⊥平面ABC,那么在△ABC和△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.答案AB、BC、ACAB解析∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,∴与AP垂直的直线是AB.7.如下图,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)答案DM⊥PC(或BM⊥PC等)解析由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.8.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出以下结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案①②③解析由题意知PA⊥平面ABC,∴PA⊥BC.又AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.9.α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ〞是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有________个.答案2解析假设α,β换为直线a,b,那么命题化为“a∥b,且a⊥γ⇒b⊥γ〞,此命题为真命题;假设α,γ换为直线a,b,那么命题化为“a∥β,且a⊥b⇒b⊥β〞,此命题为假命题;假设β,γ换为直线a,b,那么命题化为“a∥α,且b⊥α⇒a⊥b〞,此命题为真命题.10.(2022·四川)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=eq\f(1,2)AD.(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;(2)证明:平面PAB⊥平面PBD.(1)解取棱AD的中点M(M∈平面PAD),点M即为所求的一个点,理由如下:连接BM,CM.因为AD∥BC,BC=eq\f(1,2)AD,所以BC∥AM,且BC=AM,所以四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 端午节团课课件
- 端午节假期班会课件
- 宠物自由买卖协议书范本
- 竞赛宣传课件图片模板
- 竞聘自我介绍课件视频
- 工地施工欠款协议书范本
- 2025年湿法加工合成云母粉项目合作计划书
- 2025年表面改性金属材料项目合作计划书
- 心理健康课件短视频
- 空气课件教学课件
- 2024年第一季度医疗安全(不良)事件分析报告
- 北京市第三十九中学2024 -2025 学年上学期 七年级数学学科期中试卷
- 民法典物业管理培训
- 隔板理论获奖课件
- 项目施工副经理工作计划
- 2024至2030年中国医药销售外包(CSO)行业市场运行及投资策略咨询报告
- 高中文言文试题练习题(有答案)百度文库
- DB43-T 2142-2021学校食堂建设与食品安全管理规范
- 电厂锅炉大修施工方案
- 第八届全国职工职业技能大赛(焊工)辽宁选拔赛试题库-下(判断题)
- DL∕T 2447-2021 水电站防水淹厂房安全检查技术规程
评论
0/150
提交评论