2023年江西省赣州市南康区唐西片区八年级数学第二学期期末质量检测试题含解析_第1页
2023年江西省赣州市南康区唐西片区八年级数学第二学期期末质量检测试题含解析_第2页
2023年江西省赣州市南康区唐西片区八年级数学第二学期期末质量检测试题含解析_第3页
2023年江西省赣州市南康区唐西片区八年级数学第二学期期末质量检测试题含解析_第4页
2023年江西省赣州市南康区唐西片区八年级数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在Rt△DEF中,∠EFD=90°,∠DEF=30°,EF=3cm,边长为2cm的等边△ABC的顶点C与点E重合,另一个顶点B(在点C的左侧)在射线FE上.将△ABC沿EF方向进行平移,直到A、D、F在同一条直线上时停止,设△ABC在平移过程中与△DEF的重叠面积为ycm2,CE的长为xcm,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.2.某学校在开展“节约每一滴水”的活动中,从九年级的500名同学中任选出10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表所示:节水量(单位:t)0.511.52同学数(人)2341请你估计这500名同学的家庭一个月节约的水总量大约是()A.400t B.500t C.700t D.600t3.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A.、 B.、 C.、 D.、4.已知(x﹣1)|x|﹣1有意义且恒等于1,则x的值为()A.﹣1或2 B.1 C.±1 D.05.已知一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为A. B. C. D.6.已知在一个样本中,41个数据分别落在4个组内,第一、二、四组数据个数分别为5、12、8,则第三组的频数为()A.1.375 B.1.6 C.15 D.257.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④直角三角形的两个锐角互余;⑤同角或等角的补角相等.其中真命题的个数是()A.2个 B.3个 C.4个 D.5个8.已知:,计算:的结果是()A. B. C. D.9.下列条件中,不能判定一个四边形是平行四边形的是()A.两组对边分别平行 B.一组对边平行且相等 C.两组对角分别相等 D.一组对边相等且一组对角相等10.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=65°,则∠ACD的度数为()A.65° B.60° C.55° D.45°11.若关于x的分式方程的解为x=2,则m的值为().A.2 B.0 C.6 D.412.若△ABC∽△DEF且面积比为9:25,则△ABC与△DEF的周长之比为()A.9:25 B.3:25 C.3:5 D.2:5二、填空题(每题4分,共24分)13.如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC=23,∠DAO=300,则FB的长度为________.14.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.15.如图,在中,直径,弦于,若,则____16.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P、Q分别是BD、AB上的动点,则AP+PQ的最小值为______.17.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)18.如图,在平行四边形ABCD中,∠A=45°,BC=cm,则AB与CD之间的距离为________cm.三、解答题(共78分)19.(8分)已知:线段、.求作:,使,,20.(8分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)21.(8分)如图,点C在线段AB上,过点C作CD⊥AB,点E,F分别是AD,CD的中点,连结EF并延长EF至点G,使得FG=CB,连结CE,GB,过点B作BH∥CE交线段EG于点H.(1)求证:四边形FCBG是矩形.(1)己知AB=10,DCAC①当四边形ECBH是菱形时,求EG的长.②连结CH,DH,记△DEH的面积为S1,△CBH的面积为S1.若EG=1FH,求S1+S1的值.22.(10分)如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连结DF,DE,EF.过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1)填空:当t=时,AF=CE,此时BH=;(2)当△BEF与△BEH相似时,求t的值;(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.①求S关于t的函数关系式;②直接写出周长C的最小值.23.(10分)如图,将矩形纸片()折叠,使点刚好落在线段上,且折痕分别与边,相交于点,,设折叠后点,的对应点分别为点,.(1)判断四边形的形状,并证明你的结论;(2)若,且四边形的面积,求线段的长.24.(10分)如图1,一次函数的图象与反比例函数的图象交于)两点与x轴,y轴分别交于A、B(0,2)两点,如果的面积为6.(1)求点A的坐标;(2)求一次函数和反比例函数的解析式;(3)如图2,连接DO并延长交反比例函数的图象于点E,连接CE,求点E的坐标和的面积25.(12分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△AEF与△BEA相似吗?请说明理由;(3)BD2=AD·DF吗?请说明理由.26.已知x=,y=,求的值.

参考答案一、选择题(每题4分,共48分)1、A【解析】

分0≤x≤2、2<x≤3、3<x≤4三种情况,分别求出函数表达式即可求解.【详解】解:①当0≤x≤2时,如图1,设AC交ED于点H,则EC=x,∵∠ACB=60°,∠DEF=30°,∴∠EHC=90°,y=S△EHC=×EH×HC=ECsin∠ACB×EC×cos∠ACB=CE2=x2,该函数为开口向上的抛物线,当x=2时,y=;②当2<x≤3时,如图2,设AC交DE于点H,AB交DE于点G,同理△AHG为以∠AHG为直角的直角三角形,EC=x,EB=x﹣2=BG,则AG=2﹣BG=2﹣(x﹣2)=4﹣x,边长为2的等边三角形的面积为:2×=;同理S△AHG=(4﹣x)2,y=S四边形BCHG=S△ABC﹣S△AHG=﹣(x﹣4)2,函数为开口向下的抛物线,当x=3时,y=,③当3<x≤4时,如图3,同理可得:y=﹣[(4﹣x)2+(x﹣3)2]=﹣x2+4x﹣,函数为开口向下的抛物线,当x=4时,y=;故选:A.【点睛】本题考查的是动点问题的函数图象,此类题目通常需要分不同时间段确定函数的表达式,进而求解.2、D【解析】

先计算这10名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数500即可解答.【详解】解:0.5×2+1×3+1.5×4+2×110=1.2(t),

500×1.2=600(t),

答:估计这500名同学的家庭一个月节约的水总量大约是600t;

【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.003、C【解析】

根据中位数和众数的概念进行求解.【详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1.故选C.【点睛】本题考查1.中位数;2.众数,理解概念是解题关键.4、A【解析】

根据任何非3数的3次幂等于1,求x的值,注意1的任何正整数次幂也是1.【详解】根据题意,得x-1≠3,|x|-1=3.∵|x|-1=3,∴x=±1,∵x-1≠3,∴x≠1,又当x=3时,(x-1)|x|-1=1,综上可知,x的值是-1或3.故选A.【点睛】此题考查了绝对值的定义,零指数幂的定义,比较简单.5、B【解析】试题分析:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,∴b=-3k.将b=-3k代入k(x-4)-1b>0,得k(x-4)-1×(-3k)>0,去括号得:kx-4k+6k>0,移项、合并同类项得:kx>-1k;∵函数值y随x的增大而减小,∴k<0;将不等式两边同时除以k,得x<-1.故选B.考点:一次函数与一元一次不等式.6、C【解析】

解:第三组的频数=41-5-12-8=15故选:C.【点睛】本题考查频数,掌握概念是解题关键.7、B【解析】

解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题②两点之间,线段最短,正确,为真命题;命题③相等的角是对顶角,错误,为假命题;命题④直角三角形的两个锐角互余,正确,为真命题;命题⑤同角或等角的补角相等,正确,为真命题,故答案选B.考点:命题与定理.8、C【解析】

原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】∵,,

∴,

故选:C.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.9、D【解析】

根据平行四边形的判定方法逐一进行判断即可.【详解】A.两组对边分别平行的四边形是平行四边形,故A选项正确,不符合题意;B.一组对边平行且相等的四边形是平行四边形,故B选项正确,不符合题意;C.两组对角分别相等的四边形是平行四边形,故C选项正确,不符合题意;D.一组对边相等且一组对角相等的四边形不一定是平行四边形,如图,四边形ABCD为平行四边形,连接AC,作AE垂直BC于E,在EB上截取EC'=EC,连接AC',则△AEC'≌△AEC,AC'=AC,把△ACD绕点A顺时针旋转∠CAC'的度数,则AC与AC'重合,显然四边形ABC'D'满足:AB=CD=C'D',∠B=∠D=∠D',而四边形ABC'D'并不是平行四边形,故D选项错误,符合题意,故选D.【点睛】本题考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解本题的关键.10、C【解析】

由作法可知,MN为垂直平分线,DC=CD,由等腰三角形性质可知∠BCD=∠B=30°,再由三角形内角和即可求出∠ACD度数.【详解】解:由作法可知,MN为垂直平分线,

∴BD=CD,

∴∠BCD=∠B=30°,

∵∠A=65°,

∴∠ACB=180°-∠A-∠B=85°,

∴∠ACD=∠ACB-∠BCD=85°-30°=55°.

故选:C.【点睛】此题主要考查了基本作图以及线段垂直平分线的性质,得出∠DCB=∠DBC=30°是解题关键.11、C【解析】

根据分式方程的解为x=2,把x=2代入方程即可求出m的值.【详解】解:把x=2代入得,,解得m=6.故选C.点睛:本题考查了分式方程的解,熟练掌握方程解得定义是解答本题的关键.12、C【解析】

根据相似三角形的面积的比等于相似比的平方先求出△ABC与△DEF的相似比,然后根据相似三角形的周长的比等于相似比解答即可.【详解】解:∵相似三角形△ABC与△DEF面积的比为9:21,∴它们的相似比为3:1,∴△ABC与△DEF的周长比为3:1.故选:C.【点睛】本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.二、填空题(每题4分,共24分)13、2【解析】

先根据矩形的性质,推理得到∠OBF=30°,BO=12BD=12AC=3,再根据含30【详解】解:∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=30°,∵EF⊥BD,∴∠BOF=90°,∵四边形ABCD是矩形,∴AD∥BC,BO=1∴∠OBF=∠ODA=30°,∴OF=12又∵Rt△BOF中,BF2-OF2=OB2,∴BF2-14BF2=32∴BF=2.【点睛】本题主要考查了矩形的性质以及勾股定理的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.14、>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),∴关于x的不等式mx+n<x+n-2的解集为x>1,故答案为x>1.15、【解析】

根据圆周角定理求出∠COB,根据正弦的概念求出CE,根据垂径定理解答即可.【详解】由圆周角定理得,∠COB=2∠A=60°,∴CE=OC•sin∠COE=2×=,∵AE⊥CD,∴CD=2CE=2,故答案为:2.【点睛】本题考查的是垂径定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.16、2【解析】

作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】解:作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.

∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,

∴P′Q′=P′H,

∴AP′+P′Q′=AP′+P′H=AH,

根据垂线段最短可知,PA+PQ的最小值是线段AH的长,

∵AB=4,∠AHB=90°,∠ABH=45°,

∴AH=BH=2,

故答案为:2.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.17、1.【解析】试题解析:在RtΔABC中,sin34°=∴AC=AB×sin34°=500×0.56=1米.故答案为1.18、1【解析】分析:过点D作DE⊥AB,根据等腰直角三角形ADE的性质求出DE的长度,从而得出答案.详解:过点D作DE⊥AB,∵∠A=45°,DE⊥AB,∴△ADE为等腰直角三角形,∵AD=BC=,∴DE=1cm,即AB与CD之间的距离为1cm.点睛:本题主要考查的是等腰直角三角形的性质,属于基础题型.解决这个问题的关键就是作出线段之间的距离,根据直角三角形得出答案.三、解答题(共78分)19、见解析【解析】

直接利用作一角等于直角的作法得出∠BAC=90°,再截取AB=c,进而以B为圆心,BC=a的长为半径画弧,得出C点位置,进而得出答案.【详解】解:如图:作一角等于直角的作法得出∠BAC=90°,再截取AB=c,进而以B为圆心,BC=a的长为半径画弧,得出C点位置,连接CB,△ACB即为所求三角形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】

(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.【详解】(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.21、(1)证明见解析(1)①8011②2或【解析】

(1)由EF是中位线,得EF平行AB,即FG平行CB,已知FG=CB,由一组对边平行且相等得四边形FCBG是平行四边形,又因为CD垂直AB,则四边形FCBG是矩形.(1)①因为EF平行AC,根据平行列比例式,设EF为3x,由中位线性质,直角三角形的中线的性质,四边形ECBH是菱形等条件,通过线段的长度转化,最终把AC和BC用含x的关系式表示,由AB=8,列方程,求出x,把EG也用含x的代数式表示,代入x值,即可求出EG的长.②由EF是△ACD的中位线,得DF=CF,根据同底等高三角形面积相等,得△DEH和△CEH的面积相等,因为四边形CEHB是平行四边形,所以△CEH的面积和△BCH的面积相等,得到关系式:S1+S1=1S1,由EF+FH=FH+HG,得EF=HG,结合已知EG=1FH,得FH=1FG,设EF等于a,把有关线段用含a的代数式表示,分两种情况,即点H在FG上和点H在EF上,根据AB=10列关系式,求出a的值,再把S1用含a的代数式表示,代入a值即可.【详解】(1)∵EF即是△ADC的中位线,∴EF∥AC,即FG∥CB.∵FG=CB,∴四边形FCBG是平行四边形.∵CD⊥AB,即∠FCB=90°,∴四边形FCBG是矩形.(1)解:①∵EF是△ADC的中位线,∴EF=12AC,DF=12∴DFEF∴可设EF=3x,则DF=CF=4x,AC=6x.∵∠EFC=90°,∴CE=5x.∵四边形ECBH是菱形,∴BC=EC=5x,∴AB=AC+CB=6x+5x=10,∴x=10∴EG=EF+FG=EF+BC=3x+5x=8x=8011②∵EH∥BC,BH∥CE,∴四边形ECBH是平行四边形,∴EH=BC,又∵DF=CF,∴S△DEH=S△CEH,∵四边形ECBH是平行四边形,∴S△CEH=S△BCH∴S1+S1=1S1.∵EH=BC=FG,∴EF=HG.当点H在线段FG上时,如图,设EF=HG=a,∵EG=1FH,∴EG=1FH=4a,AC=1EF=1a,∴BC=FG=3a.∴AB=AC+BC=1a+3a=10,∴a=1.∵FC=23AC=43∴S1+S1=1S1=1×12×3a×43a=4a1=当点H在线段EF上时,如图.设EH=FG=a,则HF=1a.同理可得AC=6a,BC=a,FC=4a,∴AB=6a+a=10,∴a=10∴S1+S1=1S1=1×12×a×4a=4a1=400综上所述,S1+S1的值是2或40049【点睛】本题考查了四边形的综合,涉及的知识点有平行四边形的判定和性质,矩形的判定,菱形的性质,三角形中位线的性质,灵活利用(特殊)平行四边形的性质求线段长及三角形的面积是解题的关键.22、(1)、;(2);(3)①;②.【解析】

(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE-AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况);(3)分别表示出线段FD和线段AD的长,利用面积公式列出函数关系式即可.【详解】(1)∵BC=AD=9,BE=4,∴CE=9-4=5,∵AF=CE,即:3t=5,∴t=,∴,即:,解得BH=;当t=时,AF=CE,此时BH=.(2)由EH∥DF得∠AFD=∠BHE,又∵∠A=∠CBH=90°∴△EBH∽△DAF∴即∴BH=当点F在点B的左边时,即t<4时,BF=12-3t此时,当△BEF∽△BHE时:即解得:此时,当△BEF∽△BEH时:有BF=BH,即解得:当点F在点B的右边时,即t>4时,BF=3t-12此时,当△BEF∽△BHE时:即解得:(3)①∵EH∥DF∴△DFE的面积=△DFH的面积=;②如图∵BE=4,∴CE=5,根据勾股定理得,DE=13,是定值,所以当C最小时DE+EF最小,作点E关于AB的对称点E'连接DE,此时DE+EF最小,在Rt△CDE'中,CD=12,CE'=BC+BE'=BC+BE=13,根据勾股定理得,DE'=,∴C的最小值=.【点睛】此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.23、(1)四边形为菱形,理由见解析;(2)【解析】

(1)根据折叠的性质可得EC=EG,GF=CF,,由GF∥EC,可得,进一步可得GE=GF,于是可得结论;(2)根据题意可先求得CE的长,过点E作EK⊥GF于点K,在Rt△GEK中,根据勾股定理可求得GK的长,于是FK可求,在Rt△EFK中,再利用勾股定理即可求得结果.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论