安徽省蚌埠固镇县联考2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
安徽省蚌埠固镇县联考2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
安徽省蚌埠固镇县联考2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
安徽省蚌埠固镇县联考2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
安徽省蚌埠固镇县联考2023年八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于任意的正数m,n定义运算※为:m※n=m-n(m≥n)mA.2-46 B.2 C.25 D.202.宁宁所在的班级有42人,某次考试他的成绩是80分,若全班同学的平均分是78分,判断宁宁成绩是否在班级属于中等偏上,还需要了解班级成绩的()A.中位数 B.众数 C.加权平均数 D.方差3.如图,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为()A.cm2 B.cm2 C.cm2 D.cm24.如图,矩形ABCD,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为()

A.15° B.22.5° C.30° D.45°5.若,则下列式子成立的是()A. B. C. D.6.如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度的一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连接AC,BC,AD,BD,根据她的作图方法可知四边形ADBC一定是()A.菱形 B.矩形 C.正方形 D.梯形7.如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为()A.2 B. C.4 D.68.若A(2,y1),B(3,y2)是一次函数y=-3x+1的图象上的两个点,则y1与y2的大小关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定9.若分式的值为零,则x等于()A.0 B.2 C.±2 D.﹣210.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)二、填空题(每小题3分,共24分)11.计算:3-2=;12.在平面直角坐标系中,将点绕点旋转,得到的对应点的坐标是__________.13.小王参加某企业招聘测试,笔试、面试、技能操作得分分别为分、分、分,按笔试占、面试占、技能操作占计算成绩,则小王的成绩是__________.14.已知∠ABC=60°,点D是其角平分线上一点,BD=CD=6,DE//AB交BC于点E.若在射线BA上存在点F,使,请写出相应的BF的长:BF=_________15.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次为95,90,1.则小桐这学期的体育成绩是__________.16.函数中,自变量的取值范围是_____.17.如图,在矩形ABCD中,AD=5,AB=3,点E是边BC上一点,若ED平分∠AEC,则ΔABE的面积为________.18.“6l8购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售时标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打_________折三、解答题(共66分)19.(10分)计算:(1)-2(2)(-)•(+)20.(6分)解不等式组并将解集在数轴上表示出来.21.(6分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.22.(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.23.(8分)定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段AC,同时我们还发现损矩形中有公共边的两个三角形角的特点,在公共边的同侧的两个角是相等的。如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC。请再找一对这样的角来=(2)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连结BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由。(3)在第(2)题的条件下,若此时AB=,BD=,求BC的长。24.(8分)已知直线y=kx+b经过点A(﹣20,1)、B(10,20)两点.(1)求直线y=kx+b的表达式;(2)当x取何值时,y>1.25.(10分)先阅读下面的材料,再解答下面的问题:如果两个三角形的形状相同,则称这两个三角形相似.如图1,△ABC与△DEF形状相同,则称△ABC与△DEF相似,记作△ABC∽△DEF.那么,如何说明两个三角形相似呢?我们可以用“两角分别相等的三角形相似”加以说明.用数学语言表示为:如图1:在△ABC与△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF.请你利用上述定理解决下面的问题:(1)下列说法:①有一个角为50°的两个等腰三角形相似;②有一个角为100°的两个等腰三角形相似;③有一个锐角相等的两个直角三角形相似;④两个等边三角形相似.其中正确的是______(填序号);(2)如图2,已知AB∥CD,AD与BC相交于点O,试说明△ABO∽△DCO;(3)如图3,在平行四边形ABCD中,E是DC上一点,连接AE.F为AE上一点,且∠BFE=∠C,求证:△ABF∽△EAD.26.(10分)计算:(1)(2)()()

参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:∵3>2,∴3※2=3-2,∵8<22,∴8※22=8+12=2(2考点:2.二次根式的混合运算;2.新定义.2、A【解析】

根据中位数、众数,加权平均数和方差的定义逐一判断可得出答案。【详解】解:A.由中位数的定义可知,宁宁成绩与中位数比较可得出他的成绩是否在班级中等偏上,故本选项正确;B.由众数的定义可知,众数反映同一个成绩人数最多的情况,故本选项错误;C.由加权平均数的性质可知,平均数会受极端值的影响,故本选项错误;D.由方差的定义可知,方差反映的是数据的稳定情况,故本选项错误。【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、D【解析】

根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5和平行四边形AB∁nOn的面积.【详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又∵S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又∵S△ABO2=S矩形,∴S2=S矩形=;,…,∴平行四边形AB∁nOn的面积为(cm2).故选D.【点睛】此题考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.4、B【解析】

根据同角的余角相等易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠ADB的大小,从而得到结果.【详解】∵四边形ABCD是矩形,AE⊥BD,

∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,

∴∠BAE=∠ADE

∵矩形对角线相等且互相平分,

∴∠OAB=∠OBA=,

∴∠BAE=∠ADE=90﹣67.5°=22.5°,

故选B.【点睛】本题考查了矩形的性质,解题的关键是熟练掌握矩形的对角线相等且互相平分.5、B【解析】

由,设x=2k,y=3k,然后将其代入各式,化简求值即可得到答案【详解】因为,设x=2k,y=3k∴,故A错,故B对,故C错,故D错选B【点睛】本题考查比例的性质,属于简单题,解题关键在于掌握由,设x=2k,y=3k的解题方法6、A【解析】

根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.【详解】解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选A.【点睛】此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.7、A【解析】试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.

∵在直角△OCD中,∠COD=90°,OD=2,OC=6,

∴CD=,

∴PD+PA=PD+PC=CD=2.

∴PD+PA和的最小值是2.

故选A.8、C【解析】

先根据一次函数的解析式判断出函数的增减性,再根据1<3即可得出结论.【详解】解:∵一次函数y=-3x+1中,k=-3<0,∴y随着x的增大而减小.∵A(1,y1),B(3,y1)是一次函数y=-3x+1的图象上的两个点,1<3,∴y1>y1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.9、D【解析】

分式的值是1的条件是:分子为1,分母不为1.【详解】∵x2-4=1,

∴x=±2,

当x=2时,2x-4=1,∴x=2不满足条件.

当x=-2时,2x-4≠1,∴当x=-2时分式的值是1.

故选:D.【点睛】本题考查了分式值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.10、B【解析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=1,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=1,DE=1,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=1,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,1)时,∠ECD=90°,CD=1,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.二、填空题(每小题3分,共24分)11、【解析】根据负整数指数为正整数指数的倒数计算.解:3-2=.故答案为.12、【解析】

根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.【详解】解:在平面直角坐标系xOy中,将点N(-1,-2)绕点O旋转180°,得到的对应点的坐标是(1,2),故答案为:(1,2)【点睛】本题考查坐标与图形变化-旋转,解答本题的关键是明确题意,熟知坐标变化规律.13、【解析】

根据数据统计中的综合计算公式计算即可.【详解】解:故答案为94.【点睛】本题主要考查数据统计中的综合成绩的计算方法,这是数据统计中的重要知识点,必须熟练掌握.14、2或4.【解析】

过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.【详解】如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此时S△DCF1=S△BDE;过点D作DF2⊥BD,

∵∠ABC=60°,F1D∥BE,

∴∠F2F1D=∠ABC=60°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,

∴∠F1DF2=∠ABC=60°,

∴△DF1F2是等边三角形,

∴DF1=DF2,

∵BD=CD,∠ABC=60°,点D是角平分线上一点,

∴∠DBC=∠DCB=×60°=30°,

∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF2=360°-150°-60°=150°,

∴∠CDF1=∠CDF2,

∵在△CDF1和△CDF2中,,

∴△CDF1≌△CDF2(SAS),

∴点F2也是所求的点,

∵∠ABC=60°,点D是角平分线上一点,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×60°=30°,

又∵BD=6,

∴BE=×6÷cos30°=3÷=2,

∴BF1=BF2=BF1+F1F2=2+2=4,

故BF的长为2或4.故答案为:2或4.【点睛】本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.15、2.5【解析】

根据题意,求小桐的三项成绩的加权平均数即可.【详解】95×20%+90×30%+1×50%=2.5(分),答:小桐这学期的体育成绩是2.5分.故答案是:2.5【点睛】本题主要考查加权平均数,掌握加权平均数的意义,是解题的关键.16、【解析】

根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为:.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.17、1【解析】

首先根据矩形的性质和角平分线的性质得到EA=DA,从而求得BE,然后利用三角形的面积公式进行计算即可.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=5,CD=AB=3,∴∠CED=∠ADE,∵ED平分∠AEC,∴∠AED=∠CED,∴∠EDA=∠AED,∴AD=AE=5,∴BE=AE2∴△ABE的面积=12BE•AB=12×4×3=故答案为:1.【点睛】本题考查了矩形的性质,勾股定理等,了解矩形的性质是解答本题的关键,难度不大.18、八.【解析】

设打了x折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x折,

由题意得360×0.1x-240≥240×20%,

解得:x≥1.

则要保持利润不低于20%,至多打1折.

故答案为:八.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.三、解答题(共66分)19、(1);(2)﹣1.【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式进行计算即可.【详解】(1)原式=2;(2)原式=2﹣5=﹣1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20、1<x≤1.【解析】

分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】,由①得,x≤1,由②得,x>1,故不等式组的解集为:1<x≤1.在数轴上表示为:.21、见解析【解析】

(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状【详解】(1)证明:连结BE,如图.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等边三角形.理由如下:∵DE垂直平分AB,∴D为AB的中点.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等边三角形.【点睛】此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,22、(1)证明见解析;(2)证明见解析.【解析】

1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可.【详解】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.23、(1)∠ABD=∠ACD;(2)四边形ACEF为正方形,理由见解析;(3)5.【解析】

(1)以AD为公共边,有∠ABD=∠ACD;(2)证明△ADC是等腰直角三角形,得AD=CD,则AE=CF,根据对角线相等的菱形是正方形可得结论;(3)如图2,作辅助线构建直角三角形,证明△ABC≌△CHE,得CH=AB=3,根据平行线等分线段定理可得BG=GH=4,从而得结论.【详解】解:(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;(2)四边形ACEF为正方形,理由是:∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°∴∠DAC=∠CBD=45°∵四边形ACEF是菱形,∴AELCF,∴∠ADC=90°,∴△ADC是等腰直角三角形,∴AD=CD,.AE=CF,∴菱形ACEF是正方形;(3)如图2,过D作DG⊥BC于G,过E作EH⊥BC,交BC的延长线于H,∵∠DBG=45°,∴△BDG是等腰直角三角形,BD=4,∵BG=4,四边形ACEF是正方形,∴AC=CE,∠ACE=90°,AD=DE,易得△ABC≌△CHE,∴CH=AB=3,AB//DG//EH,AD=DE,∴BG=GH=4,∴CG=4-3=1,∴BC=BG+CG=4+1=5.【点睛】本题是四边形的综合题,也是新定义问题,考查了损矩形和损矩形的直径的概念,平行线等分线段定理,菱形的性质,正方形的判定等知识,认真阅读理解新定义,第3问有难度,作辅助线构建全等三角形是关键.24、(1)y=x+11;(2)x>﹣20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论