版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在□ABCD中,O是AC、BD的交点,过点O与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为().A.8cm B.10cm C.11cm D.12cm2.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=1,∠ABE=45°,则BC的长为()A. B.1.5 C. D.23.对于一次函数y=(3k+6)x﹣k,y随x的增大而减小,则k的取值范围是()A.k<0 B.k<﹣2 C.k>﹣2 D.﹣2<k<04.如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2:3C.四边形ABCD与四边形AEFG的周长比是2:3D.四边形ABCD与四边形AEFG的面积比是4:95.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D',BC与C'D'相交于点E,若BC=8,CE=3,C'E=2,则阴影部分的面积为()A.12+2 B.13 C.2+6 D.266.如图,在中,,是的平分线,于点,平分,则等于()A.1.5° B.30° C.25° D.40°7.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.30° D.45°8.下列命题是真命题的是()A.如果a2=b2,那么a=bB.如果两个角是同位角,那么这两个角相等C.相等的两个角是对项角D.在同一平面内,垂直于同一条直线的两条直线平行9.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=57010.如图,把绕着点逆时针旋转得到,,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.a与5的和的3倍用代数式表示是________.12.化简:(+2)(﹣2)=________.13.如图,和都是等腰直角三角形,,的顶点在的斜边上,若,则____.14.如图,在中,,是线段的垂直平分线,若,则用含的代数式表示的周长为____.15.若式子在实数范围内有意义,则应满足的条件是_____________.16.小玲在一次班会中参加知识抢答活动,现有语文题道,数学题道,综合题道,她从中随机抽取道,抽中数学题的概率是_________.17.若代数式和的值相等,则______.18.古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).三、解答题(共66分)19.(10分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:捐款(元)2050100150200人数(人)412932求:(Ⅰ)m=_____,n=_____;(Ⅱ)求学生捐款数目的众数、中位数和平均数;(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?20.(6分)如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.21.(6分)如图,在矩形ABCD中,E是AD边上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、QE(1)求证:四边形BPEQ是菱形:(2)若AB=6,F是AB中点,OF=4,求菱形BPEQ的面积.22.(8分)由中宣部建设的“学习强国”学习平台正式上线。这是推动新时代中国特色社会主义思想、推进马克思主义学习型政党和学习型社会建设的创新举措.某基层党组织随机抽取了部分党员的某天的学习成绩并进行了整理,分成5个小组(表示成绩,单位:分,且),根据学习积分绘制出部分频数分布表和部分频数分布直方图,其中第2、第5两组测试成绩人数直方图的高度比为,请结合下列图标中相关数据回答下列问题:学习积分频数分布表组别成绩分频数频率第1组5第2组第3组1530%第4组10第5组(1)填空:_____,______;(2)补全频数分布直方图;(3)这次积分的中位数落在第______组;(4)已知该党组织共有党员225人;请估计当天学习积分获得“优秀”等级()的党员有多少人?23.(8分)某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为;(2)补全频数分布直方图;(3)在这次抽样调查中,众数是天,中位数是天;(4)请你估计该市初二学生每学期参加综合实践活动的平均天数约是多少?(结果保留整数)24.(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.25.(10分)某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?26.(10分)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=11,继而可得△CDE的周长等于AD+CD.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD的周长22厘米,∴AD+CD=11,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11cm.
故选:C.【点睛】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.2、A【解析】
由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,求得AE=AB=1,然后依据勾股定理可求得BE的长.【详解】解:∵四边形ABCD是矩形,∴AD∥BC.∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠ABE=AEB=45°,∴AB=AE=1,∵由勾股定理得:BE=,∴BC=BE=,故选:A.【点睛】本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键.3、B【解析】
根据题意和一次函数的性质,当y随x的增大而减小时,3k+6<0,解之即可求解.【详解】∵一次函数y=(3k+6)x-k,函数值y随x的增大而减小,
∴3k+6<0,
解得:k<-2,
故选:B.【点睛】本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,掌握一次函数的增减性.4、B【解析】∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG一定是相似图形,故正确;B、AD与AG是对应边,故AD:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选B.5、B【解析】
利用平移的性质得到B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,然后根据S阴影部分=S梯形BB′C′E进行计算.【详解】解:∵四边形ABCD沿AB方向平移得到四边形A'B'C'D',∴B′C′=BC=8,BC∥B′C′,CD∥C′D′,S梯形ABCD=S梯形A′B′C′D′,∴C′D′⊥BE,∴S阴影部分=S梯形BB′C′E=(8﹣3+8)×2=1.故选:B.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.6、B【解析】
利用全等直角三角形的判定定理HL证得Rt△ACD≌Rt△AED,则对应角∠ADC=∠ADE;然后根据已知条件“DE平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【详解】∵在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,
∴CD=ED.
在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL),
∴∠ADC=∠ADE(全等三角形的对应角相等).
∵∠ADC+∠ADE+∠EDB=180°,DE平分∠ADB,
∴∠ADC=∠ADE=∠EDB=60°.
∴∠B+∠EDB=90°,
∴∠B=30°.
故选:B.【点睛】此题考查角平分线的性质.解题关键在于掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.7、D【解析】
过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,又四边形ABCD为正方形,可得出∠A为直角,进而得到一对角相等,由旋转可得∠DPE为直角,根据平角的定义得到一对角互余,在直角三角形ADP中,根据两锐角互余得到一对角互余,根据等角的余角相等可得出一对角相等,再由PD=PE,利用AAS可得出三角形ADP与三角形PEF全等,根据确定三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.【详解】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中,∵,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∠F=90°,∴△BEF为等腰直角三角形,∴∠EBF=45°,又∠CBF=90°,则∠CBE=45°.故选D.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.8、D【解析】
利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项.【详解】A、如果a2=b2,那么a=±b,故错误,是假命题;B、两直线平行,同位角才相等,故错误,是假命题;C、相等的两个角不一定是对项角,故错误,是假命题;D、平面内,垂直于同一条直线的两条直线平行,正确,是真命题,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大.9、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.10、D【解析】
直接根据旋转的性质求解【详解】绕着点逆时针旋转得到∴BAD=CAE=20°∴==30°+20°=50°故选D【点睛】本题考查了旋转的性质。掌握旋转的性质是解题的关键。二、填空题(每小题3分,共24分)11、3(a+5)【解析】根据题意,先求和,再求倍数.解:a与5的和为a+5,a与5的和的3倍用代数式表示是3(a+5).列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.12、1【解析】根据平方差公式,(+2)(﹣2)=()2﹣22=5﹣4=1.故答案为:1.13、6【解析】
连接BD,证明△ECA≌△DCB,继而得到∠ADB=90°,然后利用勾股定理进行求解即可.【详解】连接BD,∵△ACB和△ECD都是等腰直角三角形,∴CE=CD,CA=CB,∠ECD=∠ACB=90°,∴∠EDC=∠E=45°,∠ECA=∠DCB,在△ACE和△BCD中,,∴△ECA≌△BDC,∴DB=AE=4,∠BDC=∠E=45°,∴∠ADB=∠EDC+∠BDC=90°,∴AD=,故答案为6.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理等,正确添加辅助线,熟练运用相关知识是解题的关键.14、2a+3b【解析】
由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AD=BD=BC=b,从而可求△ABC的周长.【详解】解:∵AB=AC,CD=a,AD=b,∴AC=AB=a+b,∵DE是线段AB的垂直平分线,∴AD=BD=b,∴∠DBA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠DBC=∠ABC−∠DBA=36°,∴∠BDC=180°−∠ACB−∠CBD=72°,∴BD=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b.故答案为:2a+3b.【点睛】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AD=BD=BC,本题属于中等题型.15、【解析】
直接利用二次根式的定义分析得出答案.【详解】解:二次根式在实数范围内有意义,则x-1≥0,解得:x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.16、【解析】
随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:抽中数学题的概率为,
故答案为:.【点睛】本题考查了概率,正确利用概率公式计算是解题的关键.17、【解析】
由题意直接根据解分式方程的一般步骤进行运算即可.【详解】解:由题意可知:=故答案为:.【点睛】本题考查解分式方程,熟练掌握解分式方程的一般步骤是解题的关键.18、25%.【解析】
设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;列出方程,解方程求出,即可得出结果.【详解】解:设甲、乙、丙三种麦片的进价分别为a、b、c,丙麦片售出袋数为cx,由题意得:,解得:,∴,故答案为:25%.【点睛】本题考查了方程思想解决实际问题,解题的关键是通过题意列出方程,得出a、b、c的关系,进而求出利润率.三、解答题(共66分)19、4030【解析】分析:(Ⅰ)把表格中的数据相加得出本次接受随机抽样调查的学生人数;利用50元,100元的捐款人数求得占总数的百分比得出的数值即可;
(Ⅱ)利用众数、中位数和平均数的意义和求法分别得出答案即可;
(Ⅲ)利用求得的平均数乘总人数得出答案即可.详解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人.12÷30=40%,9÷30=30%,所以扇形统计图中的故答案为40,30;(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多,∴学生捐款数目的众数是50元;∵按照从小到大排列,处于中间位置的两个数据都是50,∴中位数为50元;这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元).(Ⅲ)根据题意得:2500×81=202500元答:估计该校学生共捐款202500元.点睛:本题考查扇形统计图,用样本估计总体,加权平均数,中位数,众数等,熟练掌握各个概念是解题的关键.20、12【解析】
如图,连接AD,根据垂直平分线的性质可得BD=AD,进而得到∠DAC的度数和DC的长,再根据勾股定理求出AC的长即可.【详解】如图,连接AD,∵ED是AB的垂直平分线,∴AD=BD=4,∴∠BAD=∠B=30°,∴∠DAC=30°,∵DC=12AD∴AC=AD故答案是12.【点睛】本题主要考查垂直平分线的性质以及三角函数,求出∠DAC的大小是解题的关键.21、(1)详见解析;(2).【解析】
(1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形BPEQ是平行四边形,再根据菱形的判定即可得出结论;(2)先证明OF为△BAE的中位线,然后依据三角形的中位线定理得出AE∥OF且OF=AE.求得OB的长,则可得到BE的长,设菱形的边长为x,则AP=8﹣x,在Rt△APB中依据勾股定理可列出关于x的方程,然后依据菱形的面积公式进行计算即可.【详解】(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠PEO=∠QBO,在△BOQ与△EOP中,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:∵AB=6,F是AB的中点,∴BF=1.∵四边形BPEQ是菱形,∴OB=OE.又∵F是AB的中点,∴OF是△BAE的中位线,∴AE∥OF且OF=AE.∴∠BFO=∠A=90°.在Rt△FOB中,OB==5,∴BE=2.设菱形的边长为x,则AP=8﹣x.在Rt△APB中,BP2=AB2+AP2,即x2=62+(8﹣x)2,解得:x=,∴BQ=,∴菱形BPEQ的面积=BQ×AB=×6=.【点睛】本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、三角形中位线定理、勾股定理等知识,列出关于x的方程是解题的关键.22、(1)故答案为4,32%;(2)图形见解析;(3)第三组;(4)18(人)【解析】
(1)根据3组的人数除以3组所占的百分比,可得总人数,进而可求出1组,4组的所占百分比,则a,b的值可求;(2)由(1)中的数据即可补全频数分布直方图;(3)50个人的数据中,中位数是第25和26两人的平均数,(4)用225乘以“优秀”等级()的所占比重即可求解.【详解】(1)由题意可知总人数=15÷30%=50(人),所以4组所占百分比=10÷50×100%=20%,1组所占百分比=5÷50×100%=10%,因为2组、5组两组测试成绩人数直方图的高度比为4:1,所以5a=50−5−15−10,解得a=4,所以b=16÷50×100%=32%,故答案为4,32%;(2)由(1)可知补全频数分布直方图如图所示:(3)50个人的数据中,中位数是第25和26两人的平均数,而第25和26两人都出现在第三组,(4)(人)【点睛】此题考查了频数分布表和条形统计图.认真审题找到两个图表中的关联信息,通过明确的信息推出未知的变量是解题关键.23、(1)20;(2)见解析;(3)4,4;(4)4(天).【解析】
(1)由百分比之和为1可得;
(2)先根据2天的人数及其所占百分比可得总人数,再用总人数乘以对应百分比分别求得3、5、7天的人数即可补全图形;
(3)根据众数和中位数的定义求解可得;
(4)根据加权平均数和样本估计总体思想求解可得.【详解】解:(1)a=100﹣(15+20+30+10+5)=20,故答案为20;(2)∵被调查的总人数为30÷15%=200人,∴3天的人数为200×20%=40人,5天的人数为200×20%=40人,7天的人数为200×5%=10人,补全图形如下:(3)众数是4天、中位数为=4天,故答案为4、4;(4)估计该市初二学生每学期参加综合实践活动的平均天数约是2×15%+3×20%+4×30%+5×20%+6×10%+7×5%=4.05≈4(天).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.【解析】
(1)根据平行线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025布草洗涤消毒合同书
- 上月销售总结和本月计划
- 七年级健康教育工作计划
- 2024年知识产权许可协议概要
- 2025停车场管理承包合同
- 商丘学院《数据结构与算法分析课程设计》2023-2024学年第一学期期末试卷
- 执行销售合同范例
- 粉扑加工合同范例
- 汕尾职业技术学院《科技写作与科研素养》2023-2024学年第一学期期末试卷
- 2024年版房地产项目开发合作合同
- 福建百校2025届高三12月联考历史试卷(含答案解析)
- 2024年山西省建筑安全员《B证》考试题库及答案
- 2023年益阳市安化县招聘乡镇卫生院护理人员笔试真题
- 《基于PLC的智能交通灯控制系统设计》10000字(论文)
- 首都经济贸易大学《微积分》2021-2022学年第一学期期末试卷
- 人音版音乐七年级上册《父亲的草原母亲的河》课件
- 2024年度短视频内容创作服务合同3篇
- 介入治疗并发症
- 铸牢中华民族共同体意识-形考任务1-国开(NMG)-参考资料
- 眼科主任年终总结
- 债务优化服务合同范例
评论
0/150
提交评论