安徽省滁州市名校2022-2023学年数学八下期末达标检测模拟试题含解析_第1页
安徽省滁州市名校2022-2023学年数学八下期末达标检测模拟试题含解析_第2页
安徽省滁州市名校2022-2023学年数学八下期末达标检测模拟试题含解析_第3页
安徽省滁州市名校2022-2023学年数学八下期末达标检测模拟试题含解析_第4页
安徽省滁州市名校2022-2023学年数学八下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.不能确定2.如图,字母M所代表的正方形的面积是()A.4 B.5 C.16 D.343.若关于x的一元一次不等式组有解,则m的取值范围为A. B. C. D.4.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠35.某市5月份中连续8天的最高气温如下(单位:):32,30,34,36,36,33,37,38.这组数据的众数是()A.34 B.37 C.36 D.356.下列选项中的计算,正确的是(

)A.9=±3 B.23-3=2 C.-52=-5 D.7.若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是()A.菱形 B.对角线互相垂直的四边形C.矩形 D.对角线相等的四边形8.菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是()A.12 B.24 C.40 D.489.实数a,b在数轴上的位置如图所示,则化简代数式|a+b|−a的结果是()A.2a+b B.2a C.a D.b10.质量检查员随机抽取甲、乙、丙、丁四台机器生产的20个乒乓球的直径(规格是直径4cm),整理后的平均数和方差如下表,那么这四台机器生产的乒乓球既标准又稳定的是()机器甲乙丙丁平均数(单位:cm)4.013.983.994.02方差0.032.41.10.3A.甲 B.乙 C.丙 D.丁二、填空题(每小题3分,共24分)11.如图,在中,,,,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,则的长__________.12.化简分式:=_____.13.若关于x的分式方程有增根,则k的值为__________.14.已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移_____个单位长度得到的.15.如图,在中,为边延长线上一点,且,连结、.若的面积为1,则的面积为____.16.一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是.17.方程2(x﹣5)2=(x﹣5)的根是_____.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为三、解答题(共66分)19.(10分)在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.20.(6分)先化简:,再从-1,1,2中选取一个合适的数作为x的值代入求值21.(6分)化简求值:,其中x=1.22.(8分)如图,在平面直角坐标系中,直线的解析式为,点的坐标分别为(1,0),(0,2),直线与直线相交于点.(1)求直线的解析式;(2)点在第一象限的直线上,连接,且,求点的坐标.23.(8分)如图,已知和线段a,求作菱形ABCD,使,.(只保留作图痕迹,不要求写出作法)24.(8分)如图,已知等腰Rt△ABC中,AB=AC,∠BAC=,点A、B分别在x轴和y轴上,点C的坐标为(6,2).(1)如图1,求A点坐标;(2)如图2,延长CA至点D,使得AD=AC,连接BD,线段BD交x轴于点E,问:在x轴上是否存在点M,使得△BDM的面积等于△ABO的面积,若存在,求点M的坐标;若不存在,请说明理由.25.(10分)计算下列各式的值:(1);(2)(1﹣)2﹣|﹣2|.26.(10分)已知三角形纸片ABC的面积为41,BC的长为1.按下列步骤将三角形纸片ABC进行裁剪和拼图:第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.在线段DE上任意取一点F,在线段BC上任意取一点H,沿FH将四边形纸片DBCE剪成两部分;第二步:如图2,将FH左侧纸片绕点D旋转110°,使线段DB与DA重合;将FH右侧纸片绕点E旋转110°,使线段EC与EA重合,再与三角形纸片ADE拼成一个与三角形纸片ABC面积相等的四边形纸片.图1图2(1)当点F,H在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据根的判别式判断即可.【详解】∵,∴该方程有两个相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记根的三种情况是解题的关键.2、C【解析】分析:根据勾股定理:直角三角形斜边的平方减直角边的平方等于另一直角边的平方,可得答案.详解:由勾股定理,得:M=25﹣9=1.故选C.点睛:本题考查了勾股定理,利用了勾股定理:两直角边的平方和等于斜边的平方.3、C【解析】

求出两个不等式的解集,再根据有解列出不等式组求解即可:【详解】解,∵不等式组有解,∴2m>2﹣m.∴.故选C.4、D【解析】

分式有意义,则分式的分母不为零,即x-3≠0,据此求解即可.【详解】若分式有意义,则x-3≠0,x≠3故选:D【点睛】本题考查的是分式有意义的条件,掌握分式有意义时分式的分母不为0是关键.5、C【解析】

根据众数的定义求解.【详解】∵36出现了2次,故众数为36,故选C.【点睛】此题主要考查数据的众数,解题的关键是熟知众数的定义.6、D【解析】

根据算术平方根的定义,开方运算是求算术平方根,结果是非负数,同类根式相加减,把同类二次根式的系数相加减,做为结果的系数,根号及根号内部都不变.【详解】解:A、9=3B、23C、(-5)2D、34故答案为:D【点睛】本题考查了算术平方根的计算、二次根式的计算,熟练掌握数的开方、同类二次根式的合并及二次根式商的性质是解题的关键.7、D【解析】

根据三角形的中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EF=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=AC,EF=BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.8、B【解析】解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OA=AC=4,∴OB==3,∴BD=2OB=6,∴菱形ABCD的面积是:AC•BD=×8×6=1.故选B.点睛:此题考查了菱形的性质以及勾股定理.解题的关键是熟练运用勾股定理以及菱形的各种性质.9、D【解析】

首先根据数轴可以得到a、b的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】由数轴上各点的位置可知:a<0<b.∴|a+b|−a=a+b−a=b.故选D.【点睛】此题考查整式的加减,实数与数轴,解题关键在于结合数轴分析a,b的大小.10、A【解析】

先比较出平均数,再根据方差的意义即可得出答案.【详解】解:由根据方差越小越稳定可知,甲的质量误差小,故选:A.【点睛】此题考查方差的意义.解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(每小题3分,共24分)11、1【解析】

证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根据三角形中位线定理计算即可.【详解】解:在△ABQ和△EBQ中,,∴△ABQ≌△EBQ(ASA),∴BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,∴DE=CD-CE=CD-(BC-BE)=2,∵AP=PD,AQ=QE,∴PQ=DE=1,故答案为:1.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12、-【解析】

将分子变形为﹣(x﹣y),再约去分子、分母的公因式x﹣y即可得到结论.【详解】==﹣.故答案为﹣.【点睛】本题主要考查分式的约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.13、或【解析】

分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.【详解】解:去分母得:,整理得:由分式方程有增根,得到,解得:或,把代入整式方程得:;把代入整式方程得:,则的值为或.故答案为:或【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14、1【解析】

依据直线y=kx+b与y=2x+1平行,且经过点(-3,4),即可得到直线解析式为y=2x+10,进而得到该直线可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.【详解】∵直线y=kx+b与y=2x+1平行,∴k=2,又∵直线经过点(-3,4),∴4=-3×2+b,解得b=10,∴该直线解析式为y=2x+10,∴可以看作由函数y=2x+1的图象向上平移1个单位长度得到的.故答案为:1.【点睛】本题主要考查了一次函数图象与几何变换,解决问题的关键是利用待定系数法求得直线解析式.15、3【解析】

首先根据平行四边形的性质,可得AD=BC,又由,可得BE=3BC=3AD,和的高相等,即可得出的面积.【详解】解:∵,∴AD=BC,AD∥BC,∴和的高相等,设其高为,又∵,∴BE=3BC=3AD,又∵,∴故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.16、5【解析】

解:∵这组数据的中位数和平均数相等,且2、3、4、x从小到大排列,∴(3+4)=(2+3+4+x),解得:x=5;故答案为517、x1=1,x2=1.1【解析】

移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】2(x﹣1)2﹣(x﹣1)=0,(x﹣1)[2(x﹣1)﹣1]=0,x﹣1=0,2(x﹣1)﹣1=0,x1=1,x2=1.1,故答案为:x1=1,x2=1.1.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.18、1或32【解析】

当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.

②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:

①当点B′落在矩形内部时,如答图1所示.

连结AC,

在Rt△ABC中,AB=1,BC=4,

∴AC=42+32=5,

∵∠B沿AE折叠,使点B落在点B′处,

∴∠AB′E=∠B=90°,

当△CEB′为直角三角形时,只能得到∠EB′C=90°,

∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

设BE=x,则EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得x=32,

∴BE=32;

②当点B′落在AD边上时,如答图2所示.

此时ABEB′为正方形,∴BE=AB=1.

综上所述,BE的长为32或三、解答题(共66分)19、(1)详见解析;(2)结论成立,理由详见解析.【解析】

(1)由四边形ABCD是菱形,∠ABC=60°,可知△ABC是等边三角形,因为E是线段AC的中点,所以∠CBE=∠ABE=30°,AE=CE,由AE=CF得CE=CF可知∠CEF=∠F由∠ACF=120°可知∠F=30°∴∠F=∠CBE=30°。即可证明BE=EF.(2)过点E作EG∥BC交AB于点G,可得∠AGE=∠ABC=60°,因为∠BAC=60°,所以△AGE是等边三角形,可知AG=AE=GE,∠AGE=60°,可知BG=CE,因为CF=AE,所以GE=CF,进而可证明△BGE≌△ECF,即可证明BE=EF.【详解】(1)∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∵∠ECF=120°,∴∠F=∠CEF=30°∴∠CBE=∠F=30°,∴BE=EF;(2)结论成立;理由如下:过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,∴∠ACD=60°,∠DCF=∠ABC=60°,∴∠ECF=120°,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,,又∵CF=AE,∴GE=CF,∵在△BGE和△CEF中,BG=CE,∠BGE=∠ECF,GE=CF,∴△BGE≌△ECF(SAS),∴BE=EF.【点睛】本题考查菱形的性质,等边三角形,全等三角形的性质,熟练掌握相关知识是解题关键.20、原式=,把x=2代入原式=【解析】

先根据分式的运算化简,再取x=2代入求解.【详解】==∵x不能取-1,1∴把x=2代入原式=【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.21、3x+2,2.【解析】

先将括号内异分母分式通分计算,再将除法变乘法,约分化简,再代入数据计算.【详解】解:原式===3x+2,当x=1时,原式=2.【点睛】本题考查分式的化简求值,熟练掌握分式的通分与约分是解题的关键.22、(1)y=−2x+2;(2)【解析】

(1)利用待定系数法即可得到直线AB的表达式;

(2)通过解方程组即可得到点P的坐标,设点Q(t,2t−6),作QH⊥x轴,垂足为H,PK⊥x轴,垂足为K.可得KA=2−1=1,PK=2,HA=t−1,QH=2t−6,根据勾股定理得到AP,AQ,根据AP=AQ得到关于t的方程,解方程求得t,从而得到点Q的坐标.【详解】解:(1)设AB的解析式为y=kx+b(k≠0),

把(1,0)、(0,2)代入y=kx+b得:,解得:k=−2,b=2,

∴y=−2x+2;

(2)联立得,解得:x=2,y=−2,

∴P(2,−2),设点Q(t,2t−6),作QH⊥x轴,垂足为H.PK⊥x轴,垂足为K.

KA=2−1=1,PK=2,HA=t−1,QH=2t−6

AP=,AQ=,

∵AP=AQ,

∴(t−1)2+(2t−6)2=5,

解得:t1=2(舍去);t2=,,

把x=代入y=2x−6,得y=,

∴.【点睛】此题主要考查了一次函数图象相交问题,以及待定系数法求一次函数解析式,关键是掌握两函数图象相交,交点坐标就是两函数解析式组成的方程组的解.23、详见解析【解析】

作∠DAB=∠,在射线AB,射线AD分别截取AB=AD=a,再分别以B,D为圆心a为半径画弧,两弧交于点C,连接CD,BC,四边形ABCD即为所求.【详解】如图所示.【点睛】本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.24、(1)A(2,0);(2)(0,0)(-,0).【解析】

(1)过C作CH⊥x轴于H,则CH=2,根据题意可证△ADB≌△CAH,所以OA=CH,又因点A在x轴上,所以点A的坐标为(2,0).(2)根据题意先求出点D的坐标为(2,-2),再根据△BDM的面积=△BEM的面积+△DEM的面积=△ABO的面积,列出方程解出M点的坐标.【详解】(1)过C作CH⊥x轴于H,则△ADB≌△CAH,又C(6,2),所以,OA=2,即A(2,0)(2)如图2所示,设点M的坐标为(x,0),∵AD=AC,∴点A是CD的中点,∵C(6,2),A(2,0)∴D(-2,-2).设直线BD的解析式为y=kx+b,则解得:∴直线BD的解析式为,令y=0,解得x=.∴E的坐标为(,0)∵△BDM的面积=△BEM的面积+△DEM的面积=△ABO的面积∴解得:或x=0.∴点M的坐标(0,0)或(-,0)..【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质、平面直角坐标系中坐标轴的坐标特点、中点坐标公式、一次函数解析式及与坐标轴交点坐标的求法,数轴上两点之间的距离公式,三角形的面积公式等知识,综合性较强,能综合运用知识解题是解题的关键

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论