版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若五箱苹果的质量(单位:kg)分别为18,21,18,19,20,则这五箱苹果质量的中位数和众数分别是()A.18和18 B.19和18 C.20和18 D.20和192.下列选择中,是直角三角形的三边长的是()A.1,2,3 B.2,5,3 C.3,4,5 D.4,5,63.正比例函数y=3x的大致图像是()A. B. C. D.4.在平行四边形ABCD中,AC=10,BD=6,则边长AB,AD的可能取值为().A.AB=4,AD=4 B.AB=4,AD=7 C.AB=9,AD=2 D.AB=6,AD=25.如图,在平行四边形ABCD中,点E是CD边上一点,,连接AE、BE、BD,且AE、BD交于点F,若,则()A.15.5 B.16.5 C.17.5 D.18.56.如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点。设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为()A.(1,2) B.() C. D.7.如图,已知点在反比例函数()的图象上,作,边在轴上,点为斜边的中点,连结并延长交轴于点,则的面积为()A. B. C. D.8.在一幅长,宽的硅藻泥风景画的四周,增添一宽度相同的装饰纹边,制成一幅客厅装饰画,使得硅藻泥风景画的面积是整个客厅装饰画面积的,设装饰纹边的宽度为,则可列方程为()A.B.C.D.9.平行四边形中,若,则的度数为().A. B. C. D.10.已知反比例函数,则下列结论正确的是()A.其图象分别位于第一、三象限B.当时,随的增大而减小C.若点在它的图象上,则点也在它的图象上D.若点都在该函数图象上,且,则二、填空题(每小题3分,共24分)11.函数自变量的取值范围是_________________.12.已知5+的整数部分为a,5-的小数部分为b,则a+b的值为__________13.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=20米,则AB的长为___________米.14.如图,含45°角的直角三角板DBC的直角顶点D在∠BAC的角平分线AD上,DF⊥AB于F,DG⊥AC于G,将△DBC沿BC翻转,D的对应点落在E点处,当∠BAC=90°,AB=4,AC=3时,△ACE的面积等于_____.15.(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是.16.将圆心角为90°,面积为4π的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为_____________________.17.如图,在△ABC中,AB=BC=4,S△ABC=4,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为_______18.如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时,为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)三、解答题(共66分)19.(10分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B两点(点A在第一象限).(1)当点A的横坐标为4时.①求k的值;②根据反比例函数的图象,直接写出当﹣4<x<2(x≠0)时,y的取值范围;(2)点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,求k的值.20.(6分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=1.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.21.(6分)计算:22.(8分)如图,△ABC中,AB=10,BC=6,AC=8.(1)求证:△ABC是直角三角形;(2)若D是AC的中点,求BD的长.(结果保留根号)23.(8分)做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元.某日王老板进货A款式服装35件,B款式服装25件.怎样分配给每个店铺各30件服装,使得在保证乙店铺毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?24.(8分)解分式方程:.25.(10分)如图,四边形中,,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.(1)请求出旋转角的度数;(2)请判断与的位置关系,并说明理由;(3)若,,试求出四边形的对角线的长.26.(10分)已知关于x的方程2x2+kx-1=0.(1)求证:方程有两个不相等的实数根.(2)若方程的一个根是-1,求方程的另一个根.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】把这组数据从小到大排列为:18、18、19、20、21,数据18出现了两次最多,所以18为众数;19处在第3位是中位数.所以本题这组数据的中位数是19,众数是18.故选:B.【点睛】本题考查众数,中位数,在做题时需注意①众数是出现次数最多的数,这样的数可能有几个;②在找中位数时需先给数列进行排序,如果数列的个数是奇数个,那么中位数为中间那个数,如果数列的个数是偶数个,那么中位数为中间两个数的平均数.2、C【解析】
根据勾股定理的逆定理,逐一判断选项,即可得到答案.【详解】∵12+22≠32,∴1,2,3不是直角三角形的三边长,∴A不符合题意,∵22+32≠52,∴2,5,3不是直角三角形的三边长,∴B不符合题意,∵32+42=52,∴3,4,5是直角三角形的三边长,∴C符合题意,∵42+52≠62,∴4,5,6不是直角三角形的三边长,∴D不符合题意.故选C.【点睛】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.3、B【解析】∵3>0,∴图像经过一、三象限.故选B.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.4、B【解析】
利用平行四边形的性质知,平行四边形的对角线互相平分,再结合三角形三边关系分别进行分析即可.【详解】解:因为:平行四边形ABCD,AC=10,BD=6,所以:OA=OC=5,OB=OD=3,所以:,所以:C,D错误,又因为:四边形ABCD是平行四边形,∴AD=BC、∵AD=4,∴BC=4,∵AB=4,AC=10,∴AB+BC<AC,∴不能组成三角形,故此选此选项错误;因为:AB=4,AD=7,所以:三角形存在.故选B.【点睛】本题考查平行四边形的性质及三角形的三边关系,掌握平行四边形的性质和三角形三边关系是解题关键.5、C【解析】
根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF,再根据同高的三角形的面积之比等于底的比得出△BEF的面积,则=+即可求解.【详解】解:∵四边形ABCD是平行四边形,∴DE∥AB,∴△DFE∽△BFA,∵DE:EC=2:3,∴DE:AB=2:5,DF:FB=2:5,∵=2,根据相似三角形的面积比等于相似比的平方,∴:=,即==12.5,∵同高的三角形的面积之比等于底的比,△DEF和△BEF分别以DF、FB为底时高相同,∴:=DF:FB=2:5,即==5,∴=+=12.5+5=17.5,故选C.【点睛】本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质.6、C【解析】
如图,连接PD.由B、D关于AC对称,推出PB=PD,推出PB+PE=PD+PE,推出当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=3,推出AE=EB=1,AD=AB=2,分别求出PB+PE的最小值,PC的长即可解决问题.【详解】如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,如下图:当点P与A重合时,PE+PB=3,,AD=AB=2在RT△AED中,DE=点H的纵坐标为点H的横坐标为H故选C.【点睛】本题考查正方形的性质,解题关键在于熟练掌握正方形性质及计算法则.7、A【解析】
先根据题意证明△BOE∽△CBA,根据相似比得出BO×AB的值即为k的值,再利用BC×OE=BO×AB和面积公式即可求解.【详解】∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90∘,∴△BOE∽△CBA,∴,即BC×OE=BO×AB.即BC×OE=BO×AB=k=6.∴,故选:A.【点睛】本题主要考查相似三角形判定定理,熟悉掌握定理是关键.8、B【解析】
设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(1+2x)cm,根据矩形的面积公式结合硅藻泥风景画的面积是整个客厅装饰画面积的78%,即可得出关于x的一元二次方程,此题得解.【详解】解:设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(1+2x)cm,根据题意得:(200+2x)(1+2x)×78%=200×1.故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9、B【解析】
根据平行四边形的性质:邻角互补,对角线相等即可解答【详解】在平行四边形中,∴,故选:B.【点睛】本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等.10、C【解析】
根据反比例函数图象上点的坐标特征、反比例函数的性质解答.【详解】解:反比例比例系数的正负决定其图象所在象限,当时图象在第一、三象限;当时图象在二、四象限,由题可知,所以A错误;当时,反比例函数图象在各象限内随的增大而减小;当时,反比例函数图象在各象限内随的增大而增大,由题可知,当时,随的增大而增大,所以B错误;比例系数:如果任意一点在反比例图象上,则该点横纵坐标值的乘积等于比例系数,因为点在它的图象上,所以,又因为点的横纵坐标值的乘积,所以点也在函数图象上,故C正确当时,反比例函数图象在各象限内随的增大而增大,由题可知,所以当时,随的增大而增大,而D选项中的并不确定是否在同一象限内,所以的大小不能粗糙的决定!所以D错误;故选:C【点睛】本题考查了反比例函数的性质,熟悉反比例函数的图象和性质是解题的关键.二、填空题(每小题3分,共24分)11、【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:2x+1>0,解得:.
故答案为:.【点睛】函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.12、12-【解析】
先估算的取值范围,再求出5+与5-的取值范围,从而求出a,b的值.【详解】解:∵3<<4,∴8<5+<9,1<5-<2,∴5+的整数部分为a=8,5-的小数部分为b=5--1=4-,∴a+b=8+4-=12-,故答案为12-.【点睛】本题主要考查了无理数的估算,解题关键是确定无理数的范围.13、40【解析】【分析】推出DE是三角形ABC的中位线,即可求AB.【详解】因为,D、E是AC、BC的中点,所以,DE是三角形ABC的中位线,所以,AB=2DE=40米故答案为:40【点睛】本题考核知识点:三角形中位线.解题关键点:理解三角形中位线的性质.14、【解析】
根据勾股定理得到BC=5,由折叠的性质得到△BCE是等腰直角三角形,过E作EH⊥AC交CA的延长线于H,根据勾股定理得到EH=,于是得到结论【详解】∵在△ABC中,∠BAC=90°,AB=4,AC=3,∴BC=5,∵△BCE是△DBC沿BC翻转得到得∴△BCE是等腰直角三角形,∴∠BEC=90°,∠BCE=45°,CE=,BC=过E作EH⊥AC交CA的延长线于H,易证△CEH≌△DCG,△DBF≌△DCG∴EH=CG,BF=CG,∵四边形AFDG和四边形BECD是正方形∴AF=AG,设BF=CG=x,则AF=4-x,AG=3+x∴4-x=3+x,∴x=∴EH=CG=∴△ACE的面积=××3=,故答案为:【点睛】此题考查折叠问题和勾股定理,等腰直角三角形的性质,解题关键在于做辅助线15、2【解析】
解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合.可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.16、1【解析】
设扇形的半径为R,则=4π,解得R=4,设圆锥的底面半径为r,根据题意得=4π,解得r=1,即圆锥的底面半径为1.17、2【解析】
试题解析::如图,过A作AH⊥BC交CB的延长线于H,∵AB=CB=4,S△ABC=4,∴AH=2,∴cos∠HAB=,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,∵∠BAC=∠C=30°,作点P关于直线AC的对称点P′,过P′作P′Q⊥BC于Q交AC于K,则P′Q的长度=PK+QK的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH是矩形,∴P′Q=AH=2,即PK+QK的最小值为2.【点睛】本题考查了轴对称确定最短路线问题,矩形的性质,解直角三角形,熟记利用轴对称确定最短路线的方法是解题的关键.18、3,5.4,6,6.5【解析】
作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值【详解】点在上,时,秒;点在上,时,过点作交于点,点在上,时,④点在上,时,过点作交于点,为的中位线,【点睛】本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.三、解答题(共66分)19、(1)①k=12;②y的取值范围是y<﹣3或y>6;(2)k=6.【解析】
(1)①先求得点A的坐标,再把点A的坐标代入y=(k>0)即可求得k值;②求得当x=﹣4和x=2时y的值,结合图像,再利用反比例函数的性质即可求得y的取值范围;(2)设点A为(a,),根据勾股定理求得OA=,根据函数的对称性及直角三角形斜边的性质可得OA=OB=OC=,根据三角形的面积公式求得a=,即可得点A为(2,),代入即可求得k值.【详解】(1)①将x=4代入y=x得,y=3,∴点A(4,3),∵反比例函数y=(k>0)的图象与一次函数y=x的图象交于A点,∴3=,∴k=12;②∵x=﹣4时,y==﹣3,x=2时,y=6,∴由反比例函数的性质可知,当﹣4<x<2(x≠0)时,y的取值范围是y<﹣3或y>6;(2)设点A为(a,),则OA==,∵点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,∴OA=OB=OC=,∴S△ACB====10,解得,a=,∴点A为(2,),∴=,解得,k=6.【点睛】本题考查了反比例函数与一次函数的交点问题,熟知反比例函数与一次函数图象的交点坐标满足两函数解析式是解决问题的关键.20、(1)12,16;(2)△ABC为直角三角形,理由见解析【解析】
(1)在直角三角形中,应用勾股定理求值即可;
(2)先计算出AC2+BC2=AB2,即可判断出△ABC为直角三角形.【详解】解:(1)∵CD⊥AB,∴△BCD和△ACD都是直角三角形,∴CD==12,AD==16;(2)△ABC为直角三角形,理由:∵AD=16,BD=1,∴AB=AD+BD=16+1=25,∵AC2+BC2=202+152=625=252=AB2,∴△ABC为直角三角形.【点睛】考查了勾股定理的应用,解题关键是熟记勾股定理以及勾股定理的逆定理.21、【解析】
先化简和,再计算二次根式的除法和乘法,最后进行加减运算即可得解.【详解】,==.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算顺序和运算法则是解决此题的关键.22、(1)见解析;(2)2.【解析】分析:(1)直接根据勾股定理逆定理判断即可;(2)先由D是AC的中点求出CD的长,然后利用勾股定理求BD的长即可.详解:(1)∵AB2=100,BC2=36,AC2=64,∴AB2=BC2+AC2,∴△ABC是直角三角形.(2)CD=4,在Rt△BCD中,BD=.点睛:本题考查了勾股定理及其逆定理的应用,勾股定理是:直角三角形两条直角边的平方和等于斜边的平方;勾股定理逆定理是:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.23、分配给甲店铺A、B两种款式服装分别为21件和9件,分配给乙店铺A,B两种款式服装分别为14件和16件,最大的总毛利润为1944元.【解析】
设A款式服装分配到甲店铺为x件,则分配到乙店铺为(35-x)件;B款式分配到甲店铺为(30-x)件,分配到乙店铺为(x-5)件,总利润为y元,依题意可得到一个函数式和一个不等式,可求解.【详解】设分配给甲店铺A款式服装x件(x取整数,且5≤x≤30),则分配给甲店铺B款装(30-x)件,分配给乙店铺A款服装(35-x)件,分配给乙店铺B款式服装[25-(30-x)]=(x-5)件,总毛利润(设为y总)为:Y总=30x+40(30-x)+27(35-x)+36(x-5)=-x+1965乙店铺的毛利润(设为y乙)应满足:Y乙=27(35-x)+36(x-5)≥950,得x≥对于y总=-x+1965,y随着x的增大而减小,要使y总最大,x必须取最小值,又x≥,故取x=21,即分配给甲店铺A、B两种款式服装分别为21件和9件,分配给乙店铺A,B两种款式服装分别为14件和16
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住宅小区外墙改造协议
- 矿泉水厂保温系统安装协议
- 网络短视频副导演招聘协议
- 装饰装修劳务协议
- 市场调研门头租赁合同
- 污水处理工程劳务合同模板
- 创业学校租赁合同
- 花艺作品销售顾问聘用协议
- 建筑工程施工合同:生态保护工程
- 花园租赁协议模板
- 2022年秋新教材高中英语Unit2SuccessTheImportanceofFailure教案北师大版选择性必修第一册
- 初三九年级青骄第二课堂期末考试题及参考答案
- 职业生涯人物访谈报告(采访教师)
- 脑卒中康复治疗流程
- 四年级上册美术课件-第6课 眼镜的设计丨浙美版 (共10张PPT)
- 蚊类防制技术规范(2020年版)
- 一元一次不等式组-含参问题课件
- 工程竣工预验收质量问题整改通知单
- pcs-9882ad说明书-国内中文版
- QGDW-11513.1-2022-变电站智能机器人巡检系统技术规范第1部分
- 幼儿园绘本故事:《袁隆平》 课件
评论
0/150
提交评论