




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.一艘轮船和一艘快艇沿相同路线从甲港岀发匀速行驶至乙港,行驶路程随时间变化的图象如图,则下列结论错误的是()A.轮船的速度为20千米时 B.轮船比快艇先出发2小时C.快艇到达乙港用了6小时 D.快艇的速度为40千米时2.将0.000008这个数用科学记数法表示为(
)A.8×10-6 B.8×10-5 C.0.8×10-5 D.8×10-73.下列多项式中,不是完全平方式的是A. B. C. D.4.因式分解的正确结果是()A. B. C. D.5.下列各组线段中,能够组成直角三角形的一组是()A.,, B.2,3,4C.4,5,6 D.1,,6.如图,若DE是△ABC的中位线,△ADE的周长为1,则△ABC的周长为()A.1 B.2 C.3 D.47.在平面直角坐标系中,点(–1,–2)在第()象限.A.一B.二C.三D.四8.设,,且,则的值是()A. B. C. D.9.在平面直角坐标系中,点)平移后能与原来的位置关于轴对称,则应把点()A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位10.某市为解决部分市民冬季集中取暖问题,需铺设一条长4000米的管道,为尽量减少施工对交通造成的影响,施工时“…”,设实际每天铺设管道x米,则可得方程=20,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成二、填空题(每小题3分,共24分)11.在平面内将一个图形绕某一定点旋转________度,图形的这种变化叫做中心对称;12.如图,矩形ABCD的两条对角线相交于点O,若,,则AC的长为______.13.某电信公司推出两种上宽带的网的按月收费方式,两种方式都采取包时上网,即上网时间在一定范围内,收取固定的月使用费;超过该范围,则加收超时费.若两种方式所收费用(元)与上宽带网时间(时)的函数关系如图所示,且超时费都为1.15元/分钟,则这两种方式所收的费用最多相差__________元.14.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有_____种.15.若分式的值为0,则x的值为_________;16.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.17.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为▲.18.菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长是_______cm.三、解答题(共66分)19.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?20.(6分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请将下表补充完整:(参考公式:方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2])平均数方差中位数甲77乙5.4(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.21.(6分)如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.(1)△BEC是否为等腰三角形?证明你的结论;(2)若AB=2,∠DCE=22.5°,求BC长.22.(8分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如右表所示:图二是某同学根据上表绘制的一个不完整的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二.(2)请计算每名候选人的得票数.(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?测试项目测试成绩/分甲乙丙笔试929095面试85958023.(8分)因式分解:(1)36﹣x2(2)ma2﹣2ma+m24.(8分)A、B两地相距120km,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即按原速返回.如图是它们离A地的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车返回时(即CD段)与之间的函数解析式;(2)若当它们行驶了2.5h时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(3)直接写出当两车相距20km时,甲车行驶的时间.25.(10分)如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求四边形CEFB的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.26.(10分)解下列一元二次方程(1)(2)
参考答案一、选择题(每小题3分,共30分)1、C【解析】
观察图象可知,该函数图象表示的是路程与时间的函数关系,依据图象中的数据进行计算即可。【详解】A.轮船的速度为1608=20B.轮船比快艇先出发2小时,故本选项正确;C.快艇到达乙港用了6-2=4小时,故本选项错误;D.快艇的速度为1604=40故选:C.【点睛】本题考查了一次函数图象的运用、行程问题的数量关系的运用,解题时分析函数图象提供的信息是关键。2、A【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此即可解答.【详解】0.000008用科学计数法表示为8×10-6,故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、D【解析】
根据完全平方公式即可求出答案.【详解】A.原式,故错误;B.原式,故错误;C.原式,故错误;故选.【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.4、C【解析】
首先提取公因式a,再利用平方差公式进行二次分解即可.【详解】=a(a-1)=,故选:C.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.5、D【解析】
利用勾股定理的逆定理求解即可.【详解】A、因为,,故A项错误.B、因为,,故B错误.C、因为,,故C项错误.D、因为,,故D项正确.故选D.【点睛】本题主要考查直角三角形.利用勾股定理逆定理判定:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形.6、B【解析】
根据三角形中位线定理得到BC=2DE,AB=2AD,AC=2AE,再通过计算,得到答案.【详解】∵DE是△ABC的中位线,∴DE=BC,AD=AB,AE=AC,即AB=2AD,BC=2DE,AC=2AE,∵△ADE的周长=AD+DE+AE=1,∴△ABC的周长=AB+BC+AC=2(AD+DE+AE)=2,故选B.【点睛】本题考查的是三角形的中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.7、C【解析】分析:根据在平面直角坐标系中点的符号特征求解即可.详解:∵-1<0,-2<0,∴点(–1,–2)在第三象限.故选C.点睛:本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.8、C【解析】
将变形后可分解为:(−5)(+3)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a+=3+15b,∴(−5)(+3)=0,故可得:=5,a=25b,∴=.故选C.【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.9、C【解析】
先求出点A关于y轴的对称点,即可知道平移的规律.【详解】∵点关于y轴的对称点为(2,3)∴应把点向右平移个单位,故选C.【点睛】此题主要考查直角坐标系的坐标变换,解题的关键是熟知找到点A关于y轴的对称点.10、C【解析】
由给定的分式方程,可找出缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.此题得解.【详解】解:∵利用工作时间列出方程:,∴缺失的条件为:每天比原计划多铺设10米,结果提前20天完成.故选:C.【点睛】本题考查了由实际问题抽象出分式方程,由列出的分式方程找出题干缺失的条件是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】
根据中心对称的定义即可求解.【详解】在平面内将一个图形绕某一定点旋转1度,图形的这种变化叫做中心对称.故答案为1.【点睛】本题考查了中心对称的定义:把一个图形绕着某个点旋转1°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.掌握定义是解题的关键.12、1【解析】
根据矩形的对角线互相平分且相等可得,再根据三角形的一个外角等于与它不相邻的两个内角的和求出,然后根据直角三角形角所对的直角边等于斜边的一半解答.【详解】解:在矩形ABCD中,,,,,又,.故答案为:1.【点睛】此题考查矩形的性质,解题关键在于利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质.13、【解析】
根据题意可以求得两种方式对应的函数解析式,由图象可知,当时,这两种方式所收的费用的差先减小后增大,当时.这两种方式所收的费用的差不变,从而可以解答本题.【详解】解:由题意可得,当时,方式一:,当,方式一:,当时,方式二:,当时,方式二:,当时,,当时,,故答案为:2.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.14、1【解析】
由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,1种情况进行讨论.【详解】解:如图所示:故答案是:1.【点睛】本题考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.15、3【解析】
根据分式的值为0,分子为0,分母不为0,可得x-3=0且x+3≠0,即可得x=3.故答案为:x=3.16、【解析】
试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-117、10+.【解析】先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.在Rt△CDE中,DE=1,CE=2,由勾股定理得.∵D是BC的中点,∴BC=1CD=2.在△ABC中,∠ACB=90°,由勾股定理得.∵D是BC的中点,DE⊥BC,∴EB=EC=2.∴四边形ACEB的周长=AC+CE+EB+BA=10+.18、20cm【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:如图,∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=×6=3cm,
OB=BD=×8=4cm,
根据勾股定理得,AB=,所以,这个菱形的周长=4×5=20cm.
故答案为:20【点睛】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.三、解答题(共66分)19、(1);(2)55元【解析】
(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.【详解】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+1.综上所述:y与x之间的函数关系式为.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+1)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.【点睛】本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.20、(1)1.2,7,7.5;(2)甲,乙,乙,理由见解析.【解析】分析:(1)根据统计表,结合平均数、方差、中位数的定义,即可求出需要填写的内容.(2)①可分别从平均数和方差两方面着手进行比较;②可分别从平均数和中位数两方面着手进行比较;③可从具有培养价值方面说明理由.详解:解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,乙的平均数:(2+4+6+8+7+7+8+9+9+10)÷10=7,乙的中位数:(7+8)÷2=7.5,填表如下:平均数方差中位数甲71.27乙75.47.5(2)①从平均数和方差相结合看,甲的成绩好些;②从平均数和中位数相结合看,乙的成绩好些;③选乙参加.理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙.故答案为:(1)1.2,7,7.5;(2)①甲;②乙.点睛:本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.21、(1)△BEC是等腰三角形,见解析;(2)2【解析】
(1)由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC即可;(2)证出AE=AB=2,根据勾股定理求出BE,即可得出BC的长.【详解】解:(1)△BEC是等腰三角形;理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,即△BEC是等腰三角形.(2)∵四边形ABCD是矩形,∴∠A=∠D=90°,∵∠DCE=22.5°,∴∠DEB=2×(90°-22.5°)=135°,∴∠AEB=180°-∠DEB=45°,∴∠ABE=∠AEB=45°,∴AE=AB=2,由勾股定理得:BC=BE===2,答:BC的长是2.【点睛】本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出∠BEC=∠ECB是解决问题的关键.22、(1)图见解析;(2)甲的得票数为68票,乙的得票数为60票,丙的得票数为56票;(3)甲的平均成绩为分,乙的平均成绩为分,丙的平均成绩为分;录取乙【解析】
(1)用1减去甲、丙和其他的得票数所占总票数的百分率即可求出乙的得票数占总票数的百分率,由表格可知:甲的面试成绩为85分,然后补全图一和图二即可;(2)用总票数乘各候选人的得票数所占的百分率即可;(3)根据题意,求出三人的加权平均分,然后比较即可判断.【详解】解:(1)乙的得票数占总票数的百分率为:1-34%-28%-8%=30%由表格可知:甲的面试成绩为85分,补全图一和图二如下:(2)甲的得票数为:200×34%=68(票)乙的得票数为:200×30%=60(票)丙的得票数为:200×28%=56(票)答:甲的得票数为68票,乙的得票数为60票,丙的得票数为56票.(3)根据题意,甲的平均成绩为:分乙的平均成绩为:分丙的平均成绩为:分∵∴乙的平均成绩高∴应该录取乙.【点睛】此题考查的是扇形统计图和条形统计图,结合扇形统计图和条形统计图得出有用信息和掌握加权平均数的公式是解决此题的关键.23、(1)(6+x)(6﹣x);(1)m(a﹣1)1.【解析】
1)原式利用平方差公式分解即可;(1)原式提取m,再利用完全平方公式分解即可.【详解】(1)原式=(6+x)(6﹣x);(1)原式=m(a1﹣1a+1)=m(a﹣1)1.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24、(1)(2)(3)【解析】
(1)根据题意和函数图象中的数据可以求得甲车返回时(即CD段)y与x之间的函数解析式;(2)根据题意和函数图象中的数据可以求得当它们行驶了2.5h时,两车相遇,求乙车的速度及乙车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(3)根据题意可以列出相应的方程,求出当两车相距20km时,甲车行驶的时间.【详解】(1)由题意可得,点C的坐标为,点D的坐标为设甲车返回时(即CD段)y与x之间的函数解析式为,代入点C、D可得解得即甲车返回时(即CD段)y与x之间的函数解析式为;(2)将代入,得∴点F的坐标为∴乙车的速度为,乙车从A地到B地用的时间为设一车行驶过程中y与x的函数解析式为代入点F可得解得即乙车的速度是,乙车行驶过程中y与x之间的函数解析式为;(3)设OC段对应的函数解析式为,代入点C可得解得即OC段对应的函数解析式为解得解得故答案为:.【点睛】本题考查了一次函数的实际应用,掌握一次函数的性质、待定系数法是解题的关键.25、(1)9;(2)BE⊥AF,理由详见解析;(3);【解析】
(1)根据题意可得△ABC≌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 协助收购合同范例
- 作家助手签约标准合同范本
- 兼职短期有效合同范本
- 加盟协议英文合同范本
- 单位借款三方协议合同范本
- 剧本买卖合同范本
- 单位超市采购合同范本
- 个人承包劳务合同范本
- 单位厨师劳务合同范本
- 乡村公路开挖合同范本
- SCI期刊的名称缩写与全称对照表
- 人本位医疗培训课件
- 《供应链管理》课程整体设计
- 水利工程危险源辨识评价及风险管控清单
- 桂西北丹池成矿带主要金属矿床成矿特征及成矿规律
- 申论范文:社区微治理 共建美好家园
- 高等工程热力学教案课件
- 2023年征信知识竞赛基础题考试复习题库(带答案)
- 汽车机械基础PPT(第3版)全套完整教学课件
- 医疗器械质量管理制度
- 【招标控制价编制研究文献综述(论文)4800字】
评论
0/150
提交评论